
C
R

E
_T

R
O

N
 A

P
I

CRE_TRON is a 3D audio application-
programming interface (API) that was
developed by Crystal River Engineering
in the early 1990's to facilitate the cre-
ation of interactive AuSIM3D sound
spaces with localized sound.

The goal of the CRE_TRON API is to
allow a user or developer to build up a
sound space using the concepts of
physical reality without having to know
about the underlying algorithms, imple-
mentation or audio hardware.

This API implements the concept of a
sound space in the form of easy-to-
understand objects. Objects include
sound emitting sources, sound transfer
mediums, and sound receiving listeners.
Sounds get created by sources, such as
a ringing phone, propagate through
space, and finally reach a listener's ears,
where they are received and interpreted.

The localization processing of two inde-
pendent sound sources is illustrated in
Figure 1. This schematic can be super-
posed to represent any number of
sources. Each source is processed
through a sequence of dynamic models,
representing independent characteristics
of wave propagation. First, a "Source
Model" filter accounts for emission ampli-
tude and the directivity of the emitter. A
human voice, for instance, sounds dim-
mer when speaking away from the listen-
er than towards. Next, a "Propagation
Model" filter accounts for attenuation due
to spreading and coloration due to friction
in the medium. Finally, the signal is split
due to the differences in travel time to
each ear, and a Head-Related Transfer
Function (or HRTF), a pair of filters each
representing the directivity of an ear, is
applied for the directional effect. Finally,
the Left and Right Outputs from the
respective source pipelines are summed
together and output as a binaural mix for
headphone presentation.

Create Interactive Three-dimensional
AuSIM3D™ Sound Spaces

Create Interactive Three-dimensional
AuSIM3D™ Sound Spaces

OVERVIEW

AUDIO LOCALIZATION

AuSIM, Incorporated
Mountain View, CA 94043
Voice: +1 (650) 526-3980
FAX: +1 (772) 325-0849
info@ausim3d.com

http: / /audiosimulat ion.com

FEATURES BENEFITS
� Elegant API � Allows the widest range of simulation options of

source, propagation, and listener characteristics
� High level programming � Changes in simulation code require less time

and resources
� Direct replacement � Compatible with CRE Acoustetron 2 which is

supported by 3rd party simulation software
� Portable software � Applications developed on one system can

easily migrate to a non-identical system

3D Sound API
for Audio Simulation

For each audio source, the system pro-
duces a left and right output pair depend-
ent on the direction of emission from the
source, path of propagation, and direction
of arrival to the listener. The output pairs
corresponding to each source are mixed
and played through conventional head-
phones or nearphones. The processing
creates the perception that the source is
positioned at any specified location in
three-dimensional space.

Figure 1
AuSIM3D™ Anechoic Processing Model

TECHNOLOGY

SOFTWARE DISTRIBUTION

The audio simulation technology,
AuSIM3D™, from AuSIM, Inc. uses physi-
cal modeling and empirical data to syn-
thesize a sound space in a completely
natural and realistic way. When listening
to a system incorporating such technolo-
gy, a user not only feels immersed by
real-world, three-dimensional sounds, but
also can use natural filtering to discern
and comprehend any of several layered
concurrent sound streams.

The AuSIM3D™ server code comes pre-
installed on the AuSIM system. Client-
side code, including example programs
with source, demo applications, and diag-
nostic tools, is supplied on a CD-ROM.
Client-side code is ready-to-use for Win32
systems, and ready-to-recompile for a
variety of Unix-based systems including
Linux, Solaris, IRIX and others.

SYSTEM FUNCTIONS
cre_init(driver, hdid, sources,

mode)
Computes, detects, and allocates resources
(i.e., processors and host memory) to pro-
vide the services specified by driver to listen-
er head for the requested number of
sources. The driver is a legacy CRE term. In
the AuSIM implementation, all old anechoic
CRE drivers are honored, with a competent
emulation. New AuSIM drivers initialize a
specific set of simulation parameters. All
host objects are initialized with reasonable
values. The listener's head is located at the
origin. All sound sources are initially posi-
tioned at the full RESPONSE_DISTANCE
directly in front of the listener.
� driver: Specifies the driver type. Used
to determine sample rate, and to open live
audio by default.
� hdid: Specifies which listener to initial-
ize. Specify different listener numbers for
multiple listener support.
� sources: Number of sources to be avail-
able
� mode: Units, resolution, shift bit, AHM
selector, verbose, console mode

cre_update_audio()
Synchronizes frames and controls signal pro-
cessing. This routine checks for any pending
updates since the previous call, recomputes
signal processing parameters with respect to
all affected source-to-listener relationships,
and passes the new values to the signal pro-
cessing engine.
➽ Causes position calls to
cre_locate_source and cre_locate_head to
take effect.
➽ Also, the engine will be held until the first
cre_update_audio call happens.

cre_hold_audio(state)
➽ If state is non-zero, then the engine
stops, allowing for wavefile synchronization
➽ If the state is zero the engine resumes.

cre_close(driver, head)
De-allocates host resources for a given driver
and listener (which may then be reallocated
with another cre_init() call). cre_close() will
gently shut off audio for the specified listener.
When the last open listener is closed, all
open wave files are also closed. Calling
cre_close(ALL_DRIVERS, ALL_HEADS) will
close all audio and wave files.
� driver: reset or close
� head: Which head to close or
ALL_HEADS

cre_end()
This is an alias for cre_close(ALL_DRIVERS,
ALL_HEADS) and is compatible with the ANSI
C atexit() function
➽ Same as cre_close(Atron_CLOS,
ALL_HEADS)

LISTENER FUNCTIONS
cre_define_head(id, prm, pts, data)

Allows the user to specify parameters defin-
ing the listener model (head size and pinnae
characteristics) and the reference frame for
location coordinates in subsequent calls to
cre_locate_head()

delays by the float value pointed to by data. If
pts = 0, data is ignored and the interaural delays
are reset to their default values.
AtrnHRTFresolve - Sets the filter order trim.
AtrnHRTFmodel - Sets the model to use. This
will be one of: NearField, FarField, or
MixedField.
AtrnHEADgain - sets a single floating point dB
level for the final conversion gain in preparing a
listener's signal pair for output. The pts param-
eter is ignored.
AtrnDISPLAYtype - sets the output type for fil-
tering per display device. The enum describing
the particular device is given in the pts parame-
ter. Choose one of the following:
eqGenericHeadphone, eqGenericNearphone,
eqSennheiserHD250 or eqSennheiserHD570.
Any data is ignored.
AtrnEQleft - Downloads the display type for left
EQ coefficients.
AtrnEQright - Downloads the display type for
right EQ coefficients.

cre_locate_head(id, hloc)
Locates the head of a listener six dimension-
ally in world coordinates. It only updates
changes from previous state, recalculating
pinnae locations as needed. This function
does not affect processing until a synchro-
nization call to cre_update_audio() is suc-
cessful.
� id: head id as passed to a previously
called cre_init
� hloc = float[6] = { x, y, z, yaw, pitch,
roll}

SOURCE FUNCTIONS
cre_define_source(id, int prm, pts,

data)
Allows the user to specify parameters defin-
ing the source rendering model (directional
radiation pattern, localization ON/OFF, and lis-
tener linkage). The function is a generic dis-
patcher that may be extended in future
releases. See parameter descriptions below
for specific behavior.
� id: source id, or ALL_SOURCES
� prm: channel input, specialization on/off,
exponent factor, gain distance, time delay,
radiation profile, link head to source, source
model, model attributes, path gain

PRM Types
AtrnRADfields -Allows the user to control the
directivity of the sound. data[] will contain two
parameters (both in radians) describing a field
of radiation and a field of intensity. These
fields are cones centered on the source's bore-
sight direction (principal direction of aural
emission) in which ~90% (for the field of radia-
tion) or ~45% (for the field of intensity) of the
sound energy is dissipated.
AtrnRADprofile - Defines an audio source's
radiation pattern about its boresight axis. The
radiation profile of a sound source id is speci-
fied in data with an array of relative sound pres-
sure levels in decibels, sampled equiangularly at
pts points from the boresight direction to anti-
boresight direction, inclusive. The boresight
direction is coincident with the source's positive
roll axis (the axis parallel to the world coordi-
nate X-axis when source yaw and pitch are
zero). All definable radiation patterns are sym-

� id: head id, as given to a previous
cre_init call
� prm: ocular, pinnae, crown, offsets,
interaural dist, HRTF model, HRTF file, near-
field exaggeration, near distance scale, out-
put gain in dB, path gain

PRM Types
AtrnAURALocular - AURAL OFFSET along X
axis. Typically zero, or an offset from ocular
axis (eye) coordinates. An offset from the ocu-
lar axis, which is in front of the aural axis,
would be negative.
AtrnAURALpinnae - AURAL OFFSET along Y
axis. One-half the positive distance between
ear canal openings.
AtrnAURALcrown - AURAL OFFSET along Z
axis. Typically, either the vertical separation of
ocular and aural axes, or the vertical offset to
the head tracking sensor, which is often placed
on top of the head. An offset from the head
crown, which is above the aural axis, would be
negative.
AtrnAURALoffsets - The set of ordered AURAL
OFFSETs. With a single call to
cre_define_head(), this parameter can update
one to all AURAL OFFSETs as an ordered
array of floats pointed to by data, of pts items.
The ordered sextuple is specified by the enu-
meration ATRNspaceDef (x,y,z,yaw,pitch,roll).
Currently, only Cartesian translations (x,y,z) are
supported. All of the single value AURAL
OFFSET parameter rules stated above apply to
AtrnAURALoffsets, including pts = 0 to reset
the default values.
AtrnAHMname - Specify the name of an AHM
subject to load. If it is not one of the pre-loaded
subjects, the system will search the AHM files
(located in the directory defined by the HRTF
environment variable) for the specified AHM
subject. An error is returned if the AHM sub-
ject is not found.
AtrnINTERAURAL - The AtrnAURALpinnae
OFFSET doubled and time scaled. This param-
eter combines the spatial control of the
AtrnAURALpinnae parameter above with its
associated interaural delay scaling.
AtrnINTERAURAL is the full ear to ear width
(measured to ear canal opening) and thus is
twice the AtrnAURALpinnae value. Using
pts = 1 will set the pinnae offset to one-half the
absolute float value pointed to by data. If
pts = 0, data is ignored and the parameter is
reset to the default value. In both cases, inter-
aural delay values are not scaled to the ratio of
the given interaural size with the default size.
If pts = -1, the parameter is set according to
data, but the delay scaling is not altered.
AtrnHRTFfile - Specify HRTF filename to be
loaded. If pts = 0, data is ignored and the
default HRTF map is reloaded. Otherwise the
filename pointed to by data is loaded from the
directory given by the HRTF environment vari-
able. The pts value should be the string length
of the filename for consistency.
AtrnDELAYtable - Redefine the interaural delay
table. This parameter requires a properly for-
matted interaural delay table. This parameter is
provided for psychoacoustic research, and is
otherwise undocumented.
AtrnDELAYscale - Scale the current delay table.
When pts = 1, this will scale all interaural

Function Calls - AuSIM Implementation of CRE_TRON API Page 2

metric about the roll axis (i.e., no rectangular
horn speakers). For off-axis angles from source
to listener that fall between sample points, the
profile is linearly interpolated.
AtrnPROFILEpts - Specifies the number of pro-
file points to use.
AtrnSPATIALoff - Disables localization for this
source. The monaural sound is patched directly
through and mixed with the left and right out-
puts with a gain (in dB) defined by data. This
allows the user to implement simple panning.
If pts = 0, the previous panning mixture values
are used. If pts = 1, the given value is applied
to a balanced mixture. If pts > 2, an error is
returned. If pts < 0, localization is re-enabled,
which is the default. The source is passed
through a flat filter, so the latency remains the
same as if it were localized.
AtrnSPATIALon - Enables source localization.
This is the default.
AtrnHEADlink - By setting this parameter, the
source maintains its relative position and orien-
tation to the listener's head for all head positions
and attitudes given. When AtrnHEADlink is
enabled, all calls to cre_locate_source() estab-
lish a new relative position as a difference of
the global coordinates of head and source loca-
tions given. Any data is ignored.
AtrnHEADunlink - Disables source to head link-
age. This is the default.
AtrnSPRDrolloff - AtrnSPRDrolloff defines a
single float value multiplier for that particular
source of the global spreading-loss roll-off
exponent defined in cre_define_medium(). The
value must be positive and "reasonable".
Reasonableness depends on the global rolloff
value.
AtrnGAINdist - AtrnGAINdist defines the dis-
tance at which the gain is specified.
AtrnCHNLinput - AtrnCHNLinput allows zero,
one, or more physical live audio input channels
to be mapped to a particular source. The pts
argument specifies how many and data is the
array of integers specifying which channels to
map.
AtrnCHNLmidi - AtrnCHNLmidi allows zero,
one, or more MIDI audio input channels to be
mapped to a particular source. pts specifies
how many and data is the array of integers
specifying which MIDI channels to map.
AtrnDPLRfactor - AtrnDPLRfactor sets the
Doppler exaggeration. pts always specifies the
listener id, which may be ALL_HEADS. If
data is NULL, the Doppler factor is reset to its
default of 1.0. Setting Doppler factor to 0.0
disables it completely.

cre_locate_source(id, sloc)
Locates an audio source id in (x, y, z, yaw,
pitch, roll) world coordinates. This function
does not affect processing until a synchro-
nization call to cre_update_audio() is suc-
cessful.
� id: source_id
� sloc = float[6] = { x, y, z, yaw, pitch,
roll}

cre_amplfy_source(id, dB)
Sets the loudness of a source to 0 dB at
21/rollofexp units from the listener. This dis-
tance is ~1.96 inches from the head if units
of inches (default) are being used. To alter

this distance, scale the base 2 by the macro
GAIN_RATIO. Distant sound sources may
need to be set much higher (as much as +30
dB), in order to be audible at the listener's
position.
� id: source id or ALL_SOURCES
� dB: input gain in dB

cre_select_source(id, input)
Selects from among the available hardware
analog input channels for a given source id
for all listeners. The implementation of this
function is hardware specific and the com-
mand may not be desirable globally.
� id: source id or ALL_SOURCES
� input: none, or channel number

PROPIGATION MEDIUM FUNC-
TIONS
cre_define_medium(volm, prm, pts,

data)
Allows the user to specify parameters to
model the medium through which the sound
propagates (absorption filter distance and
spreading roll-off exponent).

� volm: medium id
� prm: roll off, model, attribute

PRM Types
AtrnLoadEnvModel - which model in DLL to
install
AtrnSetEnvModelAttr - attribute in the model to
set, and data for the attribute
AtrnROLLOFF - The roll-off exponent due to
spreading power loss. The spreading roll-off
exponent parameter sets the rate at which sound
amplitude is attenuated over distance to yield
cues in the third dimension. Currently, this
parameter can only be set to apply to all
sources. The pts argument must be set to one to
have the float value pointed to by data set the
spreading roll-off exponent, or may be zero or
negative to reset the default value.

MISC. CLIENT FUNCTIONS
cre_fetch_value(prm)

� prm: number of sources and listeners
initialized and number of units

PRM Types
AtrnLSTNRinit - number of listeners initialized
AtrnASRCinnit - number of sources initialized
AtrnSYSunits - current units

cre_query_head(id, prm, pts, data)
� id: head id to query
� prm: AHM string

PRM Types
AtrnQRYHDahm - current AHM string

CLIENT TEST FUNCTIONS
cre_test_atron(verbose)

Tests the connection to the localization server
via the ATRON protocol and gathers a text
string from the server. If verbose is non-zero,
it will print this string to stdout. Important:
This function runs verbosely from a console
window.
� verbose: 1 to print message to the
screen

cre_reset_atron(status)
Resets the server
� status: ignored

cre_client_nap(msecs)
� Sleep(msecs);

WAVEFILE FUNCTIONS
cre_open_wave(wavefile, mode)

Opens a sound file referred to by the file-
name wavefile from the GoldServe's disk,
returning a pointer to the allocated wavefile
structure wavFt. Sound file control, such as
playback through a particular source, is
effected through cre_ctrl_wave(). Currently,
the only formally recognized sound file for-
mat is RIFF (MS Windows .wav format). Note
that, independent of which driver is being
used, both 22.05 kHz and 44.1 kHz wavefiles
can be opened and played back.
� wavefile: name of wavefile to load,
either absolute or relative to the WAVEFORM
environment variable
� mode: ignored
➽ Note: wavefiles opened BEFORE a
cre_init will persist after a cre_close.
Wavefiles opened AFTER a cre_init, will be
cleaned up on a cre_close.

cre_ctrl_wave(src_id, wave, cmd,
data)

Requests the host to control the waveform
wave according to the command cmd, which
may be related to source src. This function is
a generic dispatcher that may be extended in
future releases.
� src_id: id of the source to which a
wavefile is linked
� wave: pointer to wave structure
returned by a previous cre_open_wave
� cmd: wavefile position, rewind, looped,
stop, clear flag, stats

cre_close_wave(wave)
Closes the wavefile, if open, and frees the
signal and the wave structure. If wave is
attached to a sound source and is playing, it
will be stopped before the wavefile is closed.
In order to properly de-allocate resources,
each (successful) call to cre_open_wave()
must be balanced with a call to this routine.
� wave: pointer to wave structure
returned by a previous cre_open_wave

NOTE: Not all of the original CRE_TRON
calls, as defined by CRE, are supported in the
AuSIM version. Unsupported calls include:

cre_detect()
cre_direct_source()
cre_pmeter_source()
cre_set_rel_pos()
cre_get_polar()
cre_fetch_message()
cre_fetch_error()
cre_fetch_version()
cre_query_source()
cre_query_medium()
cre_query_router()

Page 3 Function Calls, continued

C
R

E
_T

R
O

N
 A

P
I

CT-0305.0

© 2003 AuSIM, Inc.
All rights reserved.
All information and
specifications here-
in are subject to
change without
notice.

AuSIM, Incorporated
Mountain View, CA 94043 info@ausim3d.com
Voice: +1 (650) 526-3980 FAX: +1 (772) 325-0849

ht tp: / /audios imula t ion.com

#include <conio.h>
#include <stdio.h>
#pragma hdrstop

#include "cre_tron.h"
#include "cre_wave.h"

#define SourceID 0
#define HeadID 0
#define Sources 2
#define WaveFile "TEST.WAV"
#define PanLimit 100.0f

void main(void)
{

float step = -0.2f;
float SrcLoc[6] = { 10.0f, PanLimit, 0.0, 0.0, 0.0, 0.0 };
float HeadLoc[6] = { 0.0, 0.0, -10.0f, 0.0, 0.0, 0.0 };
wavFt *wave;

/* initialize two Tron sources, with verbose report */
if (cre_init(Atrn_ASM1, HeadID, Sources,

CONSOLE|_VERBOSE_) < Ok)
return;

/* open WAV file and load wave form using all buffers */
if (!(wave = cre_open_wave(WaveFile, 0))) {

printf("\nwave load error.");
return;

}
/* play open wave form as SourceID with repeat loop */
cre_ctrl_wave (SourceID, wave, WaveCTRL_LOOP, NULL);
/* locate listener once (not moving) */
cre_locate_head (HeadID, HeadLoc);

printf("\nPress Any Key to Exit ... ");
/* enter simulation loop until key is pressed */
while(!kbhit()) {

SrcLoc[AtrnY] += step; /* move source location */
if ((SrcLoc[AtrnY]<-PanLimit) || (SrcLoc[AtrnY]>PanLimit))

step = -step; /* reverse panning direction */
/* set new location as location of source 0 in space */
cre_locate_source(SourceID, SrcLoc);

cre_update_audio(); /* flush all changes */
}
/* stop wave form playback and detach from SourceID */
cre_ctrl_wave(SourceID, wave, WaveCTRL_STOP, NULL);
cre_close_wave(wave); /* close waveform */

cre_close(Atrn_CLOS, HeadID); /* close Tron */
printf("\n");

}

EXAMPLE CODE COORDINATE SYSTEM

The environment in which localized
sounds can be experienced is described
by a three-dimensional coordinate sys-
tem. Within this coordinate system, six-
dimensional vectors are used to specify
the position and orientation of the listen-
er's head and of all sound sources. The
inputs to the GoldServe™ (external or
wave forms) are mapped to the corre-
sponding locations in the coordinate sys-
tem relative to the listener's location.

The GoldServe™ software library repre-
sents a six-dimensional location vector as
an array of six 32-bit floating-point num-
bers. In this array, the first three elements
specify the x, y, and z position in space, in
number of "units" (units are selected at ini-
tialization of the GoldServe™-see
cre_init()). The second three vector ele-
ments specify the yaw, pitch, and roll, in
radians. They define the orientation of the
source or head at position (x,y,z).

The coordinate system is adopted from
the vehicle dynamic simulation world. As
illustrated in Figure 2, the system is right-
handed, with the positive x-axis straight
ahead and the positive z-axis ascending
vertically. Orientations are specified as
right-handed radian Euler rotations, roll,
pitch, and yaw, about respective x, y, and
z axes.

The six-element vector employed in the
GoldServe™ software (in using cre_locate
_head() and cre_locate_source()) is
ordered < x, y, z, yaw, pitch, roll>. The
order of rotations depends upon the rota-
tion basis. With respect to the global
coordinate system, from a local coordi-
nate system that initially coincides with
the global one, an object is rolled,
pitched, yawed, and finally translated.

Figure 2
Six-dimensional coordinate system with

listener located at (0, 0, 0, 0, 0, 0)

EXAMPLE CODE

The code listed above is a "minimal" pro-
gram which initializes the GoldServe™,
loads and plays a wave file, turns on a
single source to be used, positions a lis-
tener in space, moves a source between
two points in space, and "displays" the
sound space by updating the hardware.

The cre_init() call will locate and initialize
sufficient hardware to localize two
sources, locate the listener's head at the
origin, and locate a sound source 50
inches directly in front of the head (by
default). Since a zero was specified for
the units argument, locations will be
interpreted in inches, the default units.
The HeadLoc variable therefore refers to
a position 10 inches below the origin. A
source is by default a uniform radiator.

After successful initialization, the call
cre_amplfy_source() turns source #0
on. Note that all sources are initialized
with no amplification. In order to hear
anything from a source after initializa-
tion, cre_amplfy_source() must be used.
The cre_open_wave() and
cre_ctrl_wave() calls are used to load a
waveform from disk and play it. The lis-
tener is located once to move from the
default position to the one specified by
HeadLoc.

Then the program moves the location of
source #0 using cre_locate_source(),
and uses cre_update_audio() to flush all
changes to the hardware, in order to
display the new sound space for the lis-
tener, until any character is typed, at
which point the hardware is closed.

