
GoldServe™
AuSIM3D™ Gold Series Audio Localizing Server System

User's Guide and Reference

Covering both Hardware and Software

AuSIM, Inc.

Manual Revision 1d, October 2001

Copyright © 2001 AuSIM, Inc. All rights reserved.

AuSIM, Inc. acknowledges all trademarks found in this manual.

AuSIM, Inc.
4692 El Camino Real, Suite 101
Los Altos, CA 94022
Phone: (650) 322-8746
FAX: (561) 325-0849

e-mail: info@audiosimulation.com
web: http://www.ausim-inc.com

William L. Chapin
Text Box
AuSIM has moved to

241 Polaris Avenue
Mountain View, CA 94043

fax is now (772) 325-0849

 GOLDSERVE™ Manual 1

Contents

Chapter 1 Introduction .. 1
Overview.. 1

GoldServe� System Components .. 2
Configurations ... 3

Organization of this manual ... 3
Audio localization .. 4

Localization inputs & outputs ... 5
Real-time signal input 5
Sampled playback input 6
Displays for localized sound 6
Localized output 7

Chapter 2 Getting Started ... 9
Requirements .. 9

Hardware.. 9
Software .. 9
Input and output amplifiers... 9

Output devices .. 10
Headphones ... 10
Nearphones .. 11
Quad speakers.. 11
Multimedia stereo speakers ... 11
Other stereo speakers.. 11

System components and specifications ... 12
Installation ... 13

Hardware.. 13
Startup problems ... 14
Client software and directory organization............................... 16

Problems .. 18
Technical support .. 18
Repair .. 18
Bugs ... 18

Chapter 3 Using the GoldServe�... 19
System start up.. 19

Development usage... 19
Run-time usage .. 20

2 GOLDSERVE™ Manual

Test and example programs .. 20
demo.. 20
stresstest .. 20
example ... 21
bmp1test.. 21

Application programs .. 21
audioClient ... 21

Downloading wave files and other utility programs 22
Environment variables ... 22
CRE_TRON Software Interface (API) .. 23

Overview .. 23
Sample rates and driver selection ... 24
Example code ... 25

Coordinate system.. 27
Head tracking... 28

Audio sources.. 30
Sound files .. 30
External inputs ... 31

Special topics ... 32
Directional radiators ... 32
Atmospheric absorption ... 32
Spreading loss roll-off ... 32

Chapter 4 CRE_TRON API Function Reference .. 33
Data structures ... 33

wavFt.. 33
Program routines ... 35

cre_init.. 35
cre_update_audio ... 38
cre_close... 39
cre_end... 40
cre_detect ... 41
cre_define_head.. 42
cre_locate_head... 48
cre_define_source ... 50
cre_locate_source.. 55
cre_amplfy_source ... 58
cre_select_source .. 60
cre_pmeter_source.. 61
cre_define_medium.. 62
cre_open_wave ... 65
cre_ctrl_wave .. 67
cre_close_wave ... 72
cre_send_midi ... 73

 GOLDSERVE™ Manual 3

cre_set_midi .. 74
cre_msg_midi.. 76
cre_set_rel_pos.. 78
cre_get_polar... 80
cre_test_atron .. 82

Appendix 1 Glossary... 83
FCC Notice... 90

Appendix 2 Errata .. 91

 GOLDSERVE™ Manual 1

Chapter 1 Introduction

Overview
Interactive real-time auditory localization greatly enhances the effectiveness of
virtual environments. By presenting sounds to a listener as located in three-
dimensional space, an application transmits more information to the user,
stimulating situational awareness and creating a sense of immersion in a virtual
environment. The audio simulation technology, AuSIM3D™, from AuSIM, Inc. uses
physical modeling and empirical data to synthesize a sound space in a completely
natural and realistic way. When listening to a system incorporating such technology,
a user not only feels immersed by real-world, three-dimensional sounds, but also can
use natural filtering to discern and comprehend any of several layered concurrent
sound streams.

The GoldServe� audio-localizing systems from AuSIM, Inc. incorporate
AuSIM3D™ technology and perform real-time localization of multiple real-time
audio sources. For each audio source, the system produces a left and right output
pair dependent on the direction of emission from the source, path of propagation,
and direction of arrival to the listener. The output pairs corresponding to each
source are mixed and played through conventional headphones or nearphones. The
processing creates the perception that the source is positioned at any specified
location in three-dimensional space.

GoldServe� is a complete 3D sound-localization server subsystem to be a peripheral
to a "host" computer running a user's application. The host can be any modern
computer workstation, or several in fact. Host computers can control a GoldServe�
system via an RS-232 communication protocol (called ATRON), which is easily
implemented in the user application through a high-level 'C' application
programming interface (API). While the API hides the low-level ATRON RS-232
protocol, it is completely disclosed and may be programmed directly for access on as
yet unsupported host platforms. From the GoldServe� perspective, the user's
application is the "client" that sends commands to the GoldServe� "server" for
service. The GoldServe� client/server scheme is functionally diagrammed in Figure
1, below.

2 GOLDSERVE™ Manual

A
d

d
abox

Client WorkstationLocalization Server

Convolution Engine

Stream Controller

Wavefile
Store

M
TRO

N
Server

C
RE_TRO

N
 A

PI

AuSIM
3D

™
Library

User's Client
Application

ATRON
protocol

any external
ADAT or SPDIF Optical
digital audio device any external

balanced or unbalanced
analog audio device

ADAT or SPDIF Optical
Digital Interface

A
D

A
TA

D
A

T

op
tica

lop
tic

a
l

Figure 1. The GoldServe� functional schematic.

Currently, the only supported client API is CRE_TRON, an API that was developed
in 1991 and popularized by Crystal River Engineering, Inc. (CRE). The GoldServe�
server responds to the ATRON RS-232 protocol, also a CRE development. These two
interfaces (high- and low-level, respectively) were featured on the popular
Acoustetron and Acoustetron II sound-localization-servers from CRE. By
maintaining backward compatibility with these interfaces, GoldServe� systems are
instantly supported by scores of existing end-user applications.

GoldServe™ System Components
The system consists of an embedded computer hosting an audio filtering engine and
digital audio stream controller, a 16-channel digital audio interface, an 8-channel
analog audio interface, and monitoring console. The filtering engine is optimized to
filter 8 streams with 64 coefficients per left/right pair, 16 streams with 24 coefficients
per pair, or 5 streams with 128 coefficients per pair. All filtering is performed with
32-bit floating-point accuracy. All digital audio streams are maintained with 21-bits
of resolution. The analog interface supports 24-bit encode and decode at 44.1 or 48.0
kHz.

GoldServe� includes server software to monitor the RS-232 ports and translate
protocol strings into localization control, as well as over 100 sample wavefiles for
prerecorded playback. The system also provides a client library with several
examples to allow user applications to easily control the server.

 GOLDSERVE™ Manual 3

Configurations
GoldServe� systems can be packaged in many configurations. The basic package,
called GoldMiner, includes:
• a digital audio processing unit (DAPU) supporting sixteen (16) digital audio

streams in and out,
• a minimal console (monitor, keyboard and pointing device) for direct DAPU

control,
• a pair of high-quality, open, circumaural headphones
• an analog interface for four channels of monaural input and four pairs of

binaural output,
• a four-way (4), high-gain headphone amplifier, and
• a portable rackmount enclosure.
The DAPU of any GoldServe� system may be configured with one, two, or four
processors, which are called GoldSolo, GoldDual, and GoldQuad, respectively.
When included in the basic package, such processor configurations are called
GoldMinerSolo, GoldMinerDual and so forth.

Organization of this manual
Chapter 1 �Introduction� describes the audio localization process and its

implementation on an AuSIM GoldServe� system.

Chapter 2 �Getting Started� reviews hardware and software requirements for using
GoldServe�, explains what comes with a GoldServe� system (standard and
optional) and how to install it, and tells you how to obtain technical support
and service.

Chapter 3 �Using the GoldServe�� explains how to test your GoldServe�, and how
to write your own programs for controlling the GoldServe� AuSIM3D
system.

Chapter 4 �CRE_TRON Function Reference� describes the function calls that are
used to program your GoldServe�.

Chapter 5 �Glossary� contains a list of often-used terms relating to AuSIM3D sound.

4 GOLDSERVE™ Manual

Audio localization
The localization processing of two independent sound sources is illustrated in Figure
2. This schematic can be superposed to represent any number of sources. Each
source is processed through a sequence of dynamic models, each representing
independent characteristics of wave propagation. First, a �Source Model� filter
accounts for emission amplitude and the directivity of the emitter. A human voice,
for instance, sounds dimmer when speaking away from the listener than towards.
Next, a "Propagation Model" filter accounts for attenuation due to spreading and
coloration due to friction in the medium. Next, the signal is split due to the
differences in travel time to each ear, and a Head-Related Transfer Function (HRTF),
a pair of filters each representing the directivity of an ear, is applied for the
directional effect. Finally, the Left and Right outputs from the respective source
pipelines are summed together and output as a binaural mix for headphone
presentation.

AuSIM3D™ Anechoic Headphones

Right Output

Σ

Σ

Pipeline # 1

Propagation
Model

Listener Model

Source
Model

Left Filter

Right Filter

Input
Signal

#1

Pipeline # 2

Propagation
Model

Listener Model

Source
Model

Left Filter

Right Filter

Input
Signal

#2

Left
Output

Figure 2. AuSIM3D� anechoic localization process on the GOLDSERVE�.

 GOLDSERVE™ Manual 5

All models are dynamic, in that their parameters can change up to 60 times per
second. All AuSIM3D� systems are optimized to render changes in less than
40 milliseconds, a latency less than the least psychologically disruptive delay1. Being
entirely composed of dynamic models, the system may be driven interactively.

The Listener Model in GoldServe� uses complete spherical sets of HRTF's called
Acoustic Head Maps (AHM's). The filter characteristics comprising an AHM were
obtained from actual measurements on a human head. The GoldServe� uses Finite
Impulse Response (FIR) filters (also known as non-recursive filters).

Localization inputs & outputs
Audio input signals for localization should be as "dry" as possible, meaning without
propagation effects. Dry signal transduction is usually accomplished by miking as
directly and close to the emitter as possible. "Wet" signals will possess propagation
effects that are in conflict with those simulated by the GoldServe�, and thus have a
collapsed or confused image. The GoldServe� offers dynamic selection between
two different kinds of monaural sound sources: real-time external inputs and
sampled-sound files in pulse-code-modulated (PCM) format. A third form of input,
real-time synthesis, is under development. The GoldServe� does not support
mixing multiple inputs (whether hardware inputs or wavefiles) to a single
localization channel.

Real-time signal input
Real-time external inputs may be either analog or digital streams. All input signal
data enters the GoldServe� digital audio processing unit (DAPU) as a digital stream
through one of two optical interfaces. Each optical interface may be configured to
receive either the ADAT™ optical (8 channels) or the S/P-DIF optical standard
(2 channels). The optical, or "lightpipe", interface requires a standard TOSLINK™
cable for interconnection.

1 Humans can perceive aural latencies as small as 5 milliseconds when offered a definitive
reference. When given no reference, whether aural, visual, psychomotor, or tactile, humans
have no means of perceiving lateness.

6 GOLDSERVE™ Manual

For analog audio, the GoldServe� includes an external component (called
"Addabox�", see Figure 1), which provides 8 converters for input from analog to
digital and 8 converters for output from digital to analog. These high-fidelity
converters are provided external of the DAPU to isolate the sensitive Addabox�
components from the digital noise of the server. The Addabox� provides 24-bit
encoding at either 44.1 or 48 kHz. The analog inputs to the Addabox� accept
balanced (tip = non-inverted "hot", ring = inverted "cold", sleeve = ground,
"TRS" jacks) or unbalanced signals at the standard -10 dBV level. Hotter signals, up
to +4 dBu can be accommodated via factory adjustment. A second Addabox� may
be added to the GoldServe�.

Sampled playback input
Any sampled signal stored as PCM data (hereafter generically called "wavefiles")
may be replayed by the GoldServe� system as a source input. All wavefiles are
converted to 32-bit floating point and resampled to the simulation sample rate at
load time. Unlike legacy CRE audio simulation products, the GoldServe� system
loads all wavefiles entirely into memory upon opening, performing preprocessing as
necessary. This mechanism enables the GoldServe� to accommodate wavefiles
opened from a variety of locations, including hard disk, CD-ROM, or mounted
network drive. GoldServe� does not currently support CD-A, Internet URL's, or
compressed formats such as MP3.

Displays for localized sound
The key to localizing sounds for a particular listener is to compute the signal shapes
as they should be entering the listener's respective ear canals, and then deliver them
to the canal entrance. A pair of signals intended for delivery at the ear canal
entrance, whether computed or measured, is called binaural. To contrast, stereo
signals are intended for loudspeaker display, utilizing the listening environment for
the final propagation to the listener. If the characteristics of the listening environ-
ment are well known (essentially the transfer function from the loudspeakers to the
listener), then compensation could be added to binaural signals, allowing
loudspeaker display while retaining the true localization. However, measuring and
maintaining these listening environment characteristics are very difficult in practice,
leaving headphone or nearphone displays the most viable.

The optimal binaural display should occlude the immediate aural environment, so
that ambient or local sound does not interfere with or collapse the virtual image
depicted by the binaural signals. Closed, circumaural (meaning surrounding the
entire pinnae) headphones are thus the best binaural display.

 GOLDSERVE™ Manual 7

In the continuum between closed headphones and arbitrarily placed loudspeakers, a
wide-variety of aural displays define an equally wide variance in localization display
quality. Figure 3 illustrates this continuum, with the displays supported by the
GoldServe� highlighted in bold. All displays represented assume stereo pairs with
single driver elements. Multi-driver loudspeakers diffuse the localizability and
increase compensation complexity. Multi-speaker arrays are designed create a
physical sound field in the listener's environment, are thus not compatible with
binaural audio, and require a very different type of technology to compute
compatible signals.

Arbitrary
Loudspeakers

Stereo
Loudspeakers

Multimedia
Loudspeakers

Nearphones

Open
Headphones

Closed
Headphones

Figure 3. The continuum of localization displays.

Localized output
The basic GoldServe� system, GoldMiner, offers streaming binaural output for up
to four independent listeners. A single Addabox�, as included with the basic
system, converts digital streams for four analog output pairs. The Addabox�
outputs are differential line-level signals, but may be tapped with unbalanced gear.
These line-level outputs must be amplified to support the full dynamic range
localization requires. The GoldServe� does not support output to file on disk.

 GOLDSERVE™ Manual 9

Chapter 2 Getting Started

Requirements

Hardware
Since the GoldServe� is a complete peripheral system, the only hardware
requirement is an available RS-232 serial port on the client host system (user's
workstation) through which to control the GoldServe� audio server.

The GoldServe� also provides network access to its file system via the standard
Common Internet File System (CIFS). To gain direct access to the GoldServe� file
system, you will need an ethernet port on your TCP/IP network.

Software
The GoldServe� is currently available with client software libraries and serial
drivers for Win9x, WinNT4, Win2K, MS-DOS, LINUX, IRIX, SOLARIS, and HPUX
operating systems.

The graphical-user-interface (GUI) demonstration software for UNIX systems,
audioClient, requires an X Windows environment to operate. The audioClient
application is specifically configured for Motif.

While all Win32 clients have CIFS built-in, clients running other operating systems
may have to verify the existence and proper setup of a CIFS client to gain network
access to the GoldServe� file system.

Input and output amplifiers
The analog input to the GoldServe's� Addabox� is line-level (-10 dBV), and must
be pre-amplified for microphone input. When streaming live sound, use a high-
quality microphone coupled with a microphone pre-amplifier.

10 GOLDSERVE™ Manual

Spatial audio requires a lot of dynamic range to simulate proper, realistic distance
attenuation. The GoldServe's� localized output routed through the Addabox�
analog converters is line-level (-10 dBV), and must be amplified for most
headphone displays to achieve full dynamic range. The headphone amplifier is
provided for this purpose. Please note that the supplied cables to connect the
GoldServe� Addabox� to the amplifier are balanced (differential signal) audio
cables. Use of unbalanced cables will compromise your dynamic range.
Headphones, nearphones, speakers, or amplifiers can be connected to the
headphone amplifier outputs. When the headphone amplifier is properly set, a
normalized source located at virtual arm's length with cre_amplfy_source() set
to 0 dB, should sound very loud.

Output devices
Your GoldServe� can be connected to a number of different output devices. The
cre_define_head(AtrnDISPLAYtype) function call is used to select an output
device. The default device is headphones. Different devices will provide different
levels of localization performance. Their ranking in order from best to worst:
headphones, nearphones, quad speakers, multimedia stereo speakers, and other
stereo speakers.

Headphones
Headphones are an important part of a virtual acoustic system. Your GoldServe�
system has been optimized for use with circumaural, "diffuse-field equalized"
headphones, i.e. headphones which enclose your entire ear, as opposed to
headphones that are placed inside the ear canals. For optimal localization results,
we strongly recommend usage of high-quality headphones.

The reference headphones for use with AuSIM HRTF models, are Sennheiser
HD250 II's (contact AuSIM for availability).

Depending on your virtual audio application, the difference between acoustically
open or acoustically closed headphones might be important. Open headphones
(such as the Sennheiser HD540 II's) do not provide a tight seal between the ear and
the environment. Such headphones are useful in applications where the user has to
be able to hear sounds from the surrounding environment (operator's voice,
warning signals) during the simulation. Acoustically closed headphones try to
suppress all sounds other than the ones delivered by the headphones. They are
useful in completely immersive, virtual environments, or to attenuate noisy
surroundings (trade shows, noisy workspaces).

 GOLDSERVE™ Manual11

If you plan to use electro-magnetic head-tracking devices in conjunction with your
GoldServe�, use headphones with as few metal parts as possible, in order to avoid
electro-magnetic interference between headphones and tracking sensors. Try to
avoid tracking systems that use transmission frequencies between 20-20,000 Hz (the
audible region).

Nearphones
In applications where unobtrusive equipment is important, nearphones can be used
instead of headphones. Nearphones are two speakers (left and right signal), placed
near (within 25 inches) the user's ear. An example of where nearphones are
applicable would be a simulator cab with a projection screen and two speakers
mounted next to the user's seat. The user can get in and out of the cab by simply
sitting down in a chair. To achieve optimal results the user's head should not move
out of the range of the speakers, or turn more than 45 degrees in any direction. The
closer the speakers are placed to the user's ears, the better the resulting localization
perception.

Quad speakers
If speakers cannot be placed close to the listener, a quad speaker setup - left
front/back, and right front/back - is recommended. In this case, the left output of
the GoldServe� would be wired to both left speakers, the right output to both right
speakers. The listener should be placed near the center of the square formed by the
four speakers.

Multimedia stereo speakers
The term �multimedia speakers� refers to a stereo speaker setup where the speakers
are built into a computer monitor or are located close to the sides of a monitor. In
such a setup, the user's position is assumed to be directly in front of the monitor,
forming a more or less fixed geometry between the listener and the two speakers.
Special processing of the left and right audio signals is applied to enhance the 3D
effect in such a setup. Please note that multimedia speaker processing is sweet spot
(see glossary) limited.

Other stereo speakers
This category includes all other forms of stereo speaker setups. A speaker layout
that does not fit the nearphone, quad, or multimedia categories, is unlikely to
produce a convincing 3D effect, and is therefore not recommended.

12 GOLDSERVE™ Manual

System components and specifications
A GoldServe� base system (GoldMiner) consists of the following items:

• GoldServe� digital audio processing unit (DAPU) with wavefile archive, dual
ADAT optical digital audio interface, and GoldServe� server software,

• GoldServe� Client Software Library and Demos on CD,
• GoldServe� Manual,
• Minimal console (monitor, keyboard, and pointing device),
• Enclosing, pre-wired rackmount case with power distribution bar,
• Open, circumaural headphones and a headphone amplifier,
• Pre-installed wavefile collection (100 wavefiles of general type: vehicles,

animals, machines, explosions, effects, instruments),
• Cables: two 1/4 inch balanced audio, four TOSLINK optical, and one RS-232

null-modem serial cable (specific to your host computer).

The system specifications:
• Localization:

 see the performance document that came with your system.
• Pitch: 20-500% shift control for all sources
• Dynamic update rate:

 see the performance document that came with your system.
• Active audio buffering: over 20 minutes (configurable to over 100 minutes)
• Analog Input: 128X oversampled, 24 bit A/D converters
• Analog Output: 8X oversampled, interpolating filters
• Stereo crosstalk: 100Hz-100dBV, 1kHz-80dBV, 10kHz-60dBV
• Wavefile archive: over 20 hours

 GOLDSERVE™ Manual13

Installation

Hardware
Follow these steps to setup and test your GoldServe�:

1. Connect the GoldServe� cables as follows:

• Connect the ¼ inch stereo cable labeled �MON� to the ADAT jack marked
�MON�.

• Connect a pair of headphones to the headphone jack on the headphone
amplifier.

• Connect the headphone amplifier power cord into the power distribution
strip mounted in the back of the rackmount case,

• Connect the black power cable labeled �POWER� to the GoldServe�
DAPU receptacle marked �POWER�.

• Plug the heavy power cable from the power distribution strip located in the
back of the rackmount case into an external 120vAC-power supply.

• Connect the mouse and keyboard cables labeled �MSE� and �KBD� to the
GoldServe� DAPU jacks labeled �MSE� and �KBD�

• Connect the monitor power cord into the power distribution strip mounted
in the back of the rackmount case, and plug the other monitor cable into the
DAPU jack labeled �VGA�.

• Plug the end of the RS-232 serial cable labeled �AuSIM Server (COM1)� into
the jack labeled �COM1� on the back of the DAPU, and plug the other end
into the �COM2� port also on the back of the server DAPU. (This will allow
the server installation to be verified; later, the second end of the RS-232
serial cable will need to be plugged into an available COM port on the client
machine.)

• Toggle the power distribution strip switch so that the red light is
illuminated, indicating that the strip is providing power.

• Boot the DAPU by toggling the power switch on the front of the DAPU
unit, and let the system boot into WinNT.

2. Press the �CTRL�, �ALT�, and �DEL� keys simultaneously when prompted, and
at the logon prompt, type in �Golddigger� (without the quotes) for the user name
and �nugget� (without the quotes) for the password.

14 GOLDSERVE™ Manual

3. When the Windows NT desktop appears, the server window should also appear,
accompanied by a double beep to indicate the AuSIM server application has been
activated. You should also see a spinning tumbler in the upper right-hand corner of
the server window that indicates the server is serving properly. If there is no
tumbler, advance to the next chapter on startup problems.

4. Click on the �START� button on the lower left-hand side of the screen, then
select �AuSIM�, from the menu, then �Test�, then select from the listed test
applications. You should hear a demo running on your system. If you can see the
tumbler spinning on the screen, but there is no audio, check the connection from the
GoldServe� to the headphone amp, and from the headphone amp to the
headphones. If you hear the demo, your server is functioning properly.

5. Next, connect the GoldServe� to your client system (PC, SGI, SUN, or HP) via
the serial cable that was provided for your specific system. On the server end, the
serial cable will be connected to the �COM1� jack; on the client end, the default
serial port is port number one (COM1 on PC systems, TTYD1 on UNIX systems). To
select a different serial port, please refer to the environment variable section.

6. Install the GoldServe� client software onto your client system (from floppy disk
switch to floppy drive and type install for instructions, from DAT, or ¼-inch tape,
use tar command to extract software).

7. To test the client/server connection move to the Client\Test directory on your
client system and select �demo� or �test� to start up a demo sequence that is
controlled from your client system.

8. If your GoldServe� successfully initializes and plays sounds, your system is
installed and ready to use. If the GoldServe� is not responding correctly, please
proceed to the next section on startup problems.

Startup problems

Problem: Your local demo program does not produce sound and does not start
properly (no spinning tumbler on the screen):
What to Do: Either your server environment variables, PC startup files (config.sys
and autoexec.bat,) or DSP card address switches have been changed. A call to the
factory (phone number on front cover) is your best bet.

Problem: Your local demo program does not produce sound but there is a tumbler:

What to Do: The server is up and running and very likely producing sound. The
problem must be in the audio connection between the server and your ears. Check
all connectors and make sure the headphone amp is powered on.

Problem: The server runs in local demo mode, but does not respond to the client:

What to Do: The communication link is most likely the problem.

 GOLDSERVE™ Manual15

Serial communication link:

Make sure both ends are operating at the same baud (see chapters on Startup menus
and Environment variables for details).

On WinNT systems, the client and server baud should both be set to 115200. The
server is so set at the factory, but the client may be set by setting the environment
variable TRONCOM, by adding the following line in the client�s AUTOEXEC.BAT
file: set TRONCOM=1@1152,30

16 GOLDSERVE™ Manual

Client software and directory organization

Directory File Description
Test client application
Test client application
Demonstration program
A very simple example program
Test tracker application
Test tracker application
Communications test program

Client

waves
test.wav
welcome.wav
quack.wav
jaws.wav

Sound files

Clientst.exe
Cre_test.exe
Demo.exe
Example.exe
Ltrkstrm.exe
Ltrkstrm.exe
Win32com

Example

demo
osaw

…

test

BasicCREAPI
connect.bat
WIN32COM1
WIN32COM2

include
all CRE header filescre_tron.h

atron.h
...

lib Source code - main library for serial server
Source code - main library for tracker code
 CRE_TRON reference manual
This document
Catalog of available wave files

Client.lib
Mstrak32.lib
CRETRON_Ref.txt
GoldServe.pdf
wavelist.html

bin

Example code and project workspace
Example code and project workspace

docs

Figure 4. Client directory organization, WinNT/Win9x client.

 GOLDSERVE™ Manual17

Directory File Description
Utility to list w ave file d irectory on Atron II
Utility to dow nload w ave file to Atron II
Utility to delete w ave file from Atron II
Utility to p layback a w ave file on Atron II
An X w ind ow s based sample application
A very simple example program
Demonstration program

cre

waves
test.wav
welcome.wav
quack.wav
jaws.wav

Sound files

listAtron
downloadAtron
deleteAtron
playAtron
audioClient
example
demo

tools

Makefile
deleteAtron.c
downloadAtron.c
lengthAtron.c
listAtron.c
playAtron.c
uploadAtron.c

test

Makefile
demo.c
stresstest.c
test.c

include
all CRE header filescre_tron.h

atron.h
...

lib

Source code - sw itching API
Source code - main library for serial server
Source code - serial driver
Source code - main library for ethernet server
Object library
Makefile to build libCRE.a

cre_api.c
cre_client.c
cre_serial_io.c
aio_client.c
libCRE.a
Makefile

bin

Makefile to build test programs
Source code for test programs

Makefile to build u tility program s
Source code for u tility program s

"
"

"
"
"
"
"

Figure 5. CRE directory organization, UNIX client.

18 GOLDSERVE™ Manual

Problems

Technical support
If you are having difficulties with the operation of your GoldServe�, be sure to
review the Installation procedure described earlier.

If you can�t solve your problem, you should contact technical support at AuSIM, at
the address or phone numbers listed in the inside front page of this manual. Please
be sure to have available as much as possible of the following information:

� GoldServe� software version
• GoldServe� serial number (from label near power on switch)
� If possible, example code that allows us to reproduce your problem at the

factory

Repair
Before returning faulty equipment or media for service, you first need to obtain
authorization from AuSIM or from your distributor.

Bugs
Please report suspected or confirmed software problems to AuSIM, at the e-mail
address or phone numbers listed in the inside front page of this manual. It is
essential that you include a complete description of the problem, in sufficient detail
that we can reproduce it.

 GOLDSERVE™ Manual19

Chapter 3 Using the GoldServe™

System start up
On startup, the GoldServe� system performs a number of self-tests, and then boots
up the server. It is useful to talk about two different modes of operation for your
GoldServe�: development or playback. During development of an application, the
server should be connected to its monitor and keyboard, in order to make several
options and run-time information accessible to the developer. Once an application
is developed, and the GoldServe� is used for run-time playback only, it can be run
stand-alone without the need for a monitor or keyboard.

Development usage

On boot-up of the system the following menu is displayed for a short while:

Please make a choice (you have 5 seconds before the default
gets selected)
 1. boot in MS-DOS mode
 2. boot in WinNT mode (selected)
 3. boot in Windows 98 mode

Wait five seconds, and the server will boot to WinNT, the default OS, and the
correct one for normal development usage of the GoldServe� system.

If the ethernet option is installed the menu will be slightly different:

Press the �CTRL�, �ALT�, and �DEL� keys simultaneously when prompted, and at
the logon prompt, type in �Goldminer� (without the quotes) for the user name and
�nugget� (without the quotes) for the password.

When the Windows NT desktop appears, the server window should also appear,
accompanied by a double beep to indicate the AuSIM server application has been
activated. You should also see a spinning tumbler in the upper right-hand corner of
the server.

20 GOLDSERVE™ Manual

The GoldServe� server has now started up and is waiting for communications
from the client, ready to render sounds. Once the server is running, a few keyboard
commands can be issued to control it:

SPACEBAR toggles the console display from a static screen to a screen that shows
all on-going communication between the client and server (on start-up it is set to
static). Please note that printing updates to the screen slows down the framerate of
the GoldServe�.

ESCAPE KEY will restart the server without rebooting the entire system.

The server and client normally operate at 115200 baud. Changing the baud rate is
not recommended, unless some special circumstances require it. Baud rate change
can be accomplished by changing the environment variables. To see how to do this
for your GoldServe� system, see the section entitled �Environment Variables�
below.

Run-time usage
To use your GoldServe� with an existing application, simply connect the client and
server systems and connect all audio equipment (headphone amp, cables, and
headphones). The monitor and keyboard are not necessary for operation, since the
system can simply be powered up, and is ready to be accessed from the client after
the GoldServe� has emitted a dual beep.

Test and example programs
Once hardware and software installation is complete, you may test the GoldServe�
system in a number of ways:

demo
The demo sequence can be started from both the server and the client end. It serves
as a verification of server functionality.

Stress creOrbit
A test program available on your client system. It will start up eight sounds that are
pre-installed on your GoldServe� system, and will orbit them around the listener's
head randomly until the program is stopped (ESC). This program challenges the
system resources, and can be used to determine whether the resources available to a
given system are capable of supporting the expected number of sound sources.

 GOLDSERVE™ Manual21

example
A very simple client example program that moves a sound around in space. This
program is a good place to look for a simple code sample to get you started on
writing your own GoldServe� applications.

Application programs
The following sample application is provided on UNIX platforms:

audioClient
If running X Windows with the Motif widget set, the audioClient program can be
used to verify the functionality of your GoldServe�. Once started on the client, it
presents a graphical user interface, and a two dimensional graphical representation
of the listening space, that allow you to load wave files, play them, and move the
sounds and the listener around in a space that includes sound reflecting walls.

22 GOLDSERVE™ Manual

Environment variables
The GoldServe� server can be controlled using the following (optional)
�environment variables� on the client system:

Variable Description Default (if not set)
TRONCOM Selects communication parameters 1@1152,30
TRONDEV Overrides the serial port device name

on non-PC client hosts.
/dev/ttyd1 (UNIX)

The TRONCOM variable needs to be set if you want to operate your GoldServe�
on a different setting than serial port 1, at 115200 baud.

WinNT
For WinNT clients, environment variables are set in the System panel within the
control panel. (need image of System Control Panel Environment Sheet)

Win95, Win98, MS-DOS
For Win9x and MS-DOS clients, the environment variables should be entered in the
C:\AUTOEXEC.BAT to make them available to client programs invoked from the
command processor. The syntax for the AUTOEXEC.BAT file (or equally at a
command prompt in a console window) is as follows:

set TRONCOM=x@yyy,zzz

UNIX
For UNIX, the environment variables should be set in a .cshrc or similar start-up
script so that their values are available in any shell. The syntax is as follows:

setenv TRONCOM x@yyy,zzz

where x is the serial port number (TTYDx or COMx), yyy the baudrate divided by
100 (100's of bits per second), and zzz the time-out period (the amount of time the
client will wait for a response from the server on an init() call). The time-out
parameter is optional.

The TRONDEV variable is optional and only needed if your client system's serial
port has a different file descriptor than the defaults. For example,

setenv TRONDEV /dev/ttya

sets the serial port device to TTYA from TTYD1. TRONDEV will override the
port number defined by TRONCOM the variable.

 GOLDSERVE™ Manual23

CRE_TRON Software Interface (API)

Overview
CRE_TRON is a 3D audio application-programming interface (API) that was
developed by Crystal River Engineering in the early 1990's to facilitate the creation
of interactive three-dimensional AuSIM3D sound spaces.

The goal of the CRE_TRON API is to allow a user or developer to build up a sound
space using the concepts of physical reality without having to know about the
underlying algorithms, implementation or audio hardware.

This API implements the concept of a sound space in the form of easy-to-
understand objects. Objects include sound emitting sources, sound reflecting
surfaces, and sound receiving listeners. Sounds get created by sources, such as a
ringing phone, propagate through space, bouncing off passive objects such as walls,
and finally reach a listener's ears, where they are received and interpreted.

The C function calls listed below are used to write programs to control the
GoldServe�. They are described in detail in the �CRE_TRON Function Reference�.
A good place to start programming is by expanding on the demo.c example code in
the AuSIM3D\Client\Examples\demo directory. This directory also contains a
sample workspace file demo.dsw that can be used in conjunction with the demo.c
file to create a sample client application.

The function calls that allow a programmer to interact with the GoldServe� can be
grouped into the following categories:

� General system functions declared in CRE_TRON.H:
cre_init (driver, head, sources, mode);
cre_update_audio ();
cre_close (driver, head);
cre_end ();
cre_detect (prm);

� Listener head functions declared in CRE_TRON.H:

cre_define_head (id, prm, pts, data[]);
cre_locate_head (id, hloc);

� Audio source functions declared in CRE_TRON.H:

cre_define_source (id, prm, pts, data[]);
cre_locate_source (id, sloc);
cre_amplfy_source (id, dB);
cre_select_source (id, channel);

24 GOLDSERVE™ Manual

cre_pmeter_source (id, &power);

� Propagation medium specific functions, declared in CRE_TRON.H:
cre_define_medium (volm, prm, pts, data[]);

� Waveform functions declared in CRE_WAVE.H:

cre_open_wave (wavefile, mode);
cre_ctrl_wave (src, wave, cmd, data);
cre_close_wave (wave);

� MIDI functions, declared in CRE_MIDI.H:

cre_send_midi (src, midistr);
cre_set_midi (src, cmd, data);
cre_msg_midi (src, msg, chnl, data1, data2);

� Acoustic research functions, declared in CRE_TRON.H:

cre_set_rel_pos (head, src, azim, elev, gain);
cre_get_polar (head, src, polar);

� Acoustetron test function, declared in ATRON.H:

cre_test_atron (verbose);

Sample rates and driver selection
The GoldServe� can run multiple software drivers. Each driver implements the
CRE_TRON software interface, but might offer different functionality (see the
description of cre_init() for specific driver details). One of the important
distinctions between drivers is the sample rate at which they will run the hardware.
Two of the more common sample rates are:

• 48,000 Hz: the sample rate for professional audio. Advantage: good
resilience to intensive processing, which results in sustained post-process
high-fidelity audio quality and good localization. AuSIM is shifting its
processing to 48 kHz. Disadvantage: very high computational
requirements.

• 44,100 Hz: the sample rate for CDs. Advantage: moderate quality for audio
and localization. Disadvantage: high computational requirements.

• 22,050 Hz: the sample rate common in multimedia titles and video games.
Advantage: lower system bandwidth, computational resource, and storage
requirements. Disadvantage: poor audio and localization quality. 22 kHz
sampling is not supported by AuSIM3D. AuSIM intends to upsample all 22
kHz wavefiles in future releases.

 GOLDSERVE™ Manual25

Different drivers may be selected at start-up time by one of the parameters of the
cre_init() call.

Please note that independent of driver sample rate, both 22.05kHz and 44.1kHz
wave files can be played back.

Example code

#include <conio.h>
#include <stdio.h>
#pragma hdrstop

#include "cre_tron.h"
#include "cre_wave.h"

#define SourceID 0
#define HeadID 0
#define Sources 2
#define WaveFile "TEST.WAV"
#define PanLimit 100.0f

void main(void)
{
 float step = -0.2f;
 float SrcLoc[6] = { 10.0f, PanLimit, 0.0, 0.0, 0.0, 0.0 };
 float HeadLoc[6] = { 0.0, 0.0, -10.0f, 0.0, 0.0, 0.0 };
 wavFt *wave;

 /* initialize two Tron sources, with verbose report */
 if (cre_init(Atrn_ASM1, HeadID, Sources,
 CONSOLE|_VERBOSE_) < Ok)
 return;

 /* open WAV file and load wave form using all buffers */
 if (!(wave = cre_open_wave(WaveFile, 0))) {
 printf("\nwave load error.");
 return;
 }
 /* play open wave form as SourceID with repeat loop */
 cre_ctrl_wave (SourceID, wave, WaveCTRL_LOOP, NULL);
 /* locate listener once (not moving) */

26 GOLDSERVE™ Manual

 cre_locate_head (HeadID, HeadLoc);

 printf("\nPress Any Key to Exit ... ");
 /* enter simulation loop until key is pressed */
 while(!kbhit()) {
 SrcLoc[AtrnY] += step; /* move source location */
 if ((SrcLoc[AtrnY]<-PanLimit) || (SrcLoc[AtrnY]>PanLimit))
 step = -step; /* reverse panning direction */
 /* set new location as location of source 0 in space */
 cre_locate_source(SourceID, SrcLoc);
 cre_update_audio(); /* flush all changes */
 }
 /* stop wave form playback and detach from SourceID */
 cre_ctrl_wave(SourceID, wave, WaveCTRL_STOP, NULL);
 cre_close_wave(wave); /* close waveform */

 cre_close(Atrn_CLOS, HeadID); /* close Tron */
 printf("\n");
}

The example program listed above is a �minimal� program which initializes the
GoldServe�, loads and plays a wave file, turns on a single source to be used,
positions a listener in space, moves a source between two points in space, and
�displays� the sound space by updating the hardware.

The cre_init() call will locate and initialize sufficient hardware to localize two
sources, locate the listener�s head at the origin, and locate a sound source 50 inches
directly in front of the head (by default). Since a zero was specified for the units
argument, locations will be interpreted in inches, the default units. The HeadLoc
variable therefore refers to a position 10 inches below the origin. The source is by
default a uniform radiator.

After successful initialization, the call cre_amplfy_source() turns source #0 on.
Note that all sources are initialized with no amplification. In order to hear anything
from a source after initialization, cre_amplfy_source() must be used.

The cre_open_wave() and cre_ctrl_wave() calls are used to load a waveform
from disk and play it.

The listener is located once to move from the default position to the one specified by
HeadLoc.

Then the program moves the location of source #0 using cre_locate_source(),
and uses cre_update_audio() to flush all changes to the hardware, in order to
display the new sound space for the listener, until any character is typed, at which
point the hardware is closed.

 GOLDSERVE™ Manual27

Coordinate system
The environment in which localized sounds can be experienced is described by a
three-dimensional coordinate system. Within this coordinate system, six-
dimensional vectors are used to specify the position and orientation of the listener�s
head and of all sound sources. The inputs to the GoldServe� (external or wave
forms) are mapped to the corresponding locations in the coordinate system relative
to the listener�s location.

The GoldServe� software library represents a six-dimensional location vector as an
array of six floats (32-bit floating-point number) In this array, the first three
elements specify the x, y, and z position in space, in number of �units� (units are
selected at initialization of the GoldServe��see cre_init()). The second three
vector elements specify the yaw, pitch, and roll, in radians. They define the
orientation of the source or head at position (x,y,z).

The coordinate system is adopted from the vehicle dynamic simulation world. As
illustrated in Figure 4, the system is right-handed, with the positive x-axis straight
ahead and the positive z-axis ascending vertically. Orientations are specified as
right-handed radian Euler rotations, roll, pitch, and yaw, about respective x, y, and z
axes. The six-element vector employed in the GoldServe� software (in using
cre_locate_head() and cre_locate_source()) is ordered
< x, y, z, yaw, pitch, roll>. The order of rotations depends upon the rotation basis.
With respect to the global coordinate system, from a local coordinate system that
initially coincides with the global one, an object is rolled, pitched, yawed, and
finally translated.

28 GOLDSERVE™ Manual

+z

+x +y

+roll

+yaw

+pitch

Figure 6 Six-dimensional coordinate system with listener located

at (0, 0, 0, 0, 0, 0).

Head tracking
Closed-loop tracking of head position can provide an important enhancement to
real-time audio localization. The proprio-sensation correlation in the human brain
between head-movement and aural differences is very tight. Slight incongruities
can cause simulated aural images to collapse. Head-tracking allows AuSIM's
dynamic audio localization to maintain a consistent source to listener relationship,
providing motion-parallax localization cues.

The Software applications using AuSIM3D� libraries work well with many six-
degree-of-freedom tracking systems, including:

• Fakespace Labs� BOOM� integrated mechanical tracker and head-coupled
stereo-visual display, or

popular electromagnetic devices such as:

 GOLDSERVE™ Manual29

• Polhemus Navigation�s Isotrak�, Fastrak�, InsideTRAK�, and 3SPACE®
tracker, and

• Ascension Technology�s Flock of Birds� multiple-receiver system, or
popular ultrasonic devices such as:
• Logitech's 6D head-tracker from Fakespace Labs, or

popular inertial/hybrid devices such as:
• InterSense Technology's IS-300, IS-600, IS-900 and the source-less InterTrax.

There is no direct software support for tracking devices in

The AuSIM3D� client libraries do not directly support these tracking devices,
however the vectors resulting from head-tracker sensor sampling are perfectly
compatible with AuSIM3D and the CRE_TRON API.

There are many ways to get head-tracker support.

1. All trackers bought through AuSIM, Inc are value-added with AuSIM's
AuTrak� C++ tracker class library for Win32. AuTrak� provides a single API
for all types of trackers, as listed above. AuTrak� may also be purchased
separately.

2. Many simulation toolkits (EAI/Sense8's WorldToolKit, Division's dVise,
Paradigm/Multigen's Vega, Centric's EasyScene, etc.) include support for these
tracking devices and others.

3. Write your own. Most of these tracking instruments are RS-232 serial devices,
for which many operating systems provide good programming tools. Some of
the vendors of these instruments provide sample code.

4. Use the AuSIM3D� service application (GoldServ) running on the GoldServe�
DAPU with its built-in tracking support to directly read your head-tracking
instrument and automatically update your listener's position.

For the AuTrak, toolkit, or build-your-own methods see the respective associated
documentation. For the GoldServ service application usage, see Appendix A.

30 GOLDSERVE™ Manual

Audio sources

Sound files
Each GoldServe� can playback and localize multiple concurrent monophonic
sound files. In order to play multiple sound files simultaneously, each sound file
must be assigned to a different localization source.

Before a sound file can be played, it has to be loaded onto the GoldServe�. Once a
wave file is loaded, it can then be used in an application using the
cre_open_wave() and cre_ctrl_wave() commands.

If you wish to play the same sound file simultaneously on multiple sources, you must
open that sound file multiple times as well.

The maximum length of a sound file is limited only by the size of the hard disk,
since files get automatically played back from disk when playback memory is
exhausted. If you hear stuttering (gaps) in the wave file playback, the system
bandwidth has reached its limit, and too many files are being started at the same
time.

If a sound file�s name ends with �.WAV�, it must be formatted as a "RIFF" file
format (per Microsoft Multimedia specifications). WAVE files can be created on the
server using the Wave File Editing option available for the GoldServe�, or using
other sound recording and editing tools and downloading the sounds from the
client. If a sound file�s extension is not given, the �.WAV� is assumed and
appended.

If a sound file�s extension is explicitly something other than �.WAV� the content
must be in the CD Audio format: 16-bit PCM words at 44100Hz.

 GOLDSERVE™ Manual31

External inputs
The GoldServe� can localize concurrent live sounds that are connected via analog
or digital inputs. The external inputs can take their data from microphones, CD
players, or other sources of analog audio. The physical connectors depend on the
GoldServe� system; see your system-specific guide.

For all drivers.

32 GOLDSERVE™ Manual

Special topics

Directional radiators
For different audio sources and environments, the sound will travel through the
atmosphere in the space in different ways. The directional radiators are used to
model this propagation pattern. The following figure shows two different radiation
patterns for two different directional sources. The heavy lines indicate contours of
constant pressure. As you can see, in front of the speaker, the sound attenuates
much more slowly with distance than behind the speaker, where almost no sound
propagates. If there were objects placed in the environment, you would see a
change in the radiation pattern when the sound is absorbed and reflected from the
surfaces of the object.

Atmospheric absorption
The GoldServe� includes an �atmospheric absorption� model, which attenuates
higher frequencies a greater amount than lower frequencies. The degree of
attenuation depends on the distance through which the sound travels in the
atmosphere�the further it travels, the greater the relative attenuation. As a result,
distant sounds have a lowpass-filtered, or �muffled� characteristic.

This model is controlled by a �distance� parameter. For sounds that are close to the
listener, as compared with the absorption distance, the relative high-frequency
attenuation will be slight. Conversely, sounds whose range is equal to or greater
than this distance will incur correspondingly more high-frequency attenuation.

The atmospheric absorption distance can be accessed and adjusted or disabled from
its default value with the cre_define_medium() function.

Spreading loss roll-off
As sound waves radiate from a point source, their power spreads over an ever-
increasing volume of propagation medium. This spreading reduces the sound
pressure level as the sound propagates from the source position to the listener
position.

The effect of this �spreading loss roll-off� is governed by an exponential curve,
which scales a sound�s apparent power by the reciprocal of the sound�s distance
raised to an exponent. In a perfect model, this exponent is 1.0, but anechoic
simulations may need some adjustment to sound �right.�

The exponential factor for all sources may be examined and adjusted from its
default value through the cre_define_medium() function.

 GOLDSERVE™ Manual33

Chapter 4 CRE_TRON API
Function Reference

Data structures

wavFt
The waveform structure and typedef are provided for the application developer to
have detailed information on open wave forms, for the purpose of computing
useful estimates such length of play. All members are read-only except wavFt::next.

typedef struct wavFs {
 const char *fname; /* host soundfile filename */
 void *pSignal; /* pointer to the signal buffers */
 struct wavFs *next; /* linked-list pointer for user */
 void *synch; /* synchronize with this signal */
 int diskBased; /* TRUE if file still open */
 double sampleRate; /* in Hz; assumes 44.1kHz */
 short numChannels,/* 1 = mono; 2 = stereo */
 sampleSize, /* in bytes: 1=8-bit, 2=16-bit */
 frameSize, /* in bytes: samplesize*channels */
 waveId, /* remote serial identifier */
 sourceId; /* value = -1, if not attached */
 float pitchFactor;/* pitch shift factor */
 unsigned long
 numFrames, /* total frames in file */
 remFrames, /* # remaining frames NOT loaded */
 selFrames, /* length of signal selection */
 startFrame; /* beginning of signal selection */
 unsigned long
 loopStart, /* loop start, in samples */
 loopEnd, /* loop end, in samples */
 loopCount; /* loop count */
} wavFt;

34 GOLDSERVE™ Manual

MEMBERS:
fname host sound filename string with full path.
pSignal pointer to waveform signal data (internal use only).
next pointer to next waveform struct (for application use).
synch pointer to waveform that this wave will synchronize with.
diskBased Boolean; non-zero indicates that file is open.
sampleRate sample rate of the sound signal in samples per second.
numChannels number of signal channels; 1 = monoaural, 2 = stereo.

Currently, only supports monoaural.
sampleSize bytes per sample; 1 = 8-bit, 2 = 16-bit. Promotes 8-bit RIFF files

to 16-bit playback. Non-RIFF files are assumed 16-bit.
frameSize bytes per frame; frame = sampleSize * numChannels.
waveId unique index assigned for remote client/server packets.
sourceId index of associated source; ¯1 = unassigned.
pitchFactor factor by which wave gets pitch shifted >1 indicates upward

shift, <1 indicates lowering of the pitch
numFrames total frames in the signal data.
remFrames unloaded frames remaining on disk.
loopStart starting point for looping in samples.
loopEnd ending point for looping in samples.
loopCount number of times through the loop.

Currently, the following members are not being used:
selFrames length of selected signal.
startFrame index of beginning frame in selection.

 GOLDSERVE™ Manual35

Program routines

cre_init

Synopsis
#include "cre_tron.h"
int cre_init

(int driver, int head, int sources, int mode);

Description

Computes, detects, and allocates resources (i.e., processors and host
memory) to provide the services specified by driver to listener
head for the requested number of sources. The driver is a
legacy CRE term, which specified the DSP binary to load from the
host to the resourced hardware. In the AuSIM implementation, all
old anechoic CRE drivers are honored, with a competent emulation.
New AuSIM drivers initialize a specific set of simulation
parameters.

All host objects are initialized with reasonable values. The listener's
head is located at the origin. All sound sources are initially
positioned at the full RESPONSE_DISTANCE (radius of actual HRTF
responses; defined in ATRON.H) directly in front of the listener.

Parameters

Driver driver selected from ATRNdriver enum defined in
ATRON.H. Supported drivers are:

Atrn_CMP1

Atrn_BMP1

Atrn_BMP3

Atrn_BMP4

Atrn_ASM1

Atrn_A441

Note: Using any outdated driver values will cause
cre_init() to fail.

36 GOLDSERVE™ Manual

Head listener identifier to be initialized. An identifier
must be unique for each listener, numbered
sequentially from 0 to 63. If the listener is also a
sound source to other listeners, the _ORATOR_ flag
may be OR'ed with the listener ID. The _ORATOR_
flag forces the source with the same ID as the given
listener ID not to be mixed for that listener. If the
listener identifier has been previously initialized,
the requested sources are additional.

Sources maximum number of sources to be heard by the
given listener.

Mode bit field OR'ed from ATRON.H macros and enums:

units�defined in the ATRNunitsDef
enum. Select one from:

AtrnINCHES

Atrn_FEET_

AtrnMMETER

AtrnCMETER

Atrn_METER

mode flags:

VERBOSE � set verbose
messages to be displayed

 GOLDSERVE™ Manual37

Return Value

On success returns the number of sources allocated.

On failure Error0 - no sources requested, no hardware
available, or Trons already initialized.

 Error1 � memory allocation error or load failure.

 Error3 - acoustic headmap invalid or load failure.

 Error4 - invalid driver type.

 Error5 - invalid listener identifier.

 Error6 - server response error.

Example
if (cre_init(Atrn_ASM1, 0, 2, VERBOSE) < Ok)
 abort();

Remarks

If all localization resources have been allocated, subsequent calls to
cre_init() fail until a cre_close() is called to free resources.
Since all listeners share the same sound space, the number of
sources requested for each head should be consistent.

Important: In the CRE implementation, all gains were initially set
by cre_init() to GAIN_dB_OFF, so that active analog inputs at
full level will not "pop" on without user control. The AuSIM
implementation does not turn the gain off, but rather initializes each
source with no signal channel assignment. To hear sound, the
programmer MUST assign a signal channel with
cre_define_source(), cre_select_source(), or
cre_ctrl_wave(). Before connecting a signal channel, the
programmer may choose to make use of the
cre_amplfy_source() function to control the initial source
amplitude.

Note: The fixed-point distance resolution within the RS-232
ATRON protocol is in hundreths of units. If the base units are set
to AtrnINCHES, then the smallest movement would be 0.01�.

38 GOLDSERVE™ Manual

cre_update_audio

Synopsis
#include "cre_tron.h"
int cre_update_audio (void);

Description

Synchronizes frames and controls signal processing. This routine
checks for any pending updates since the previous call, recomputes
signal processing parameters with respect to all affected source-to-
listener relationships, and passes the new values to the signal
processing engine.

Parameters

None

Return Value

On success Ok, even if no changes were pending.

On failure Error0 - no sources have been initialized.

 Error1 - system could not be interrupted to
perform an update.

Example
cre_update_audio();

Remarks

cre_update_audio() should be called once every time you want
the audio updated. cre_update_audio() need not be called
more frequently than the maximum framerate of the GoldServe�
(see cre_detect() to query framerate). Redundant calls are
ignored.

Synchronization Note: In order to maintain synchronization of
audio processing in a system in which more than one object
(listener and/or sources) are moving simultaneously, you should
complete all necessary calls to cre_locate_head() and
cre_locate_source() before calling cre_update_audio().
Because the Tron�s internal audio parameters can be updated only
as fast as the specific Tron's update rate, the localization process
may ignore more frequent calls to this routine.

 GOLDSERVE™ Manual39

cre_close

Synopsis
#include "cre_tron.h"
int cre_close (int driver, int head);

Description

Deallocates host resources for a given driver and listener (which
may then be reallocated with another cre_init() call).
cre_close() will gently shut off audio for the specified listener
When the last open listener is closed, all open wave files are also
closed. Calling cre_close(ALL_DRIVERS, ALL_HEADS) will
close all audio and wave files. cre_close() is required to safely
terminate a host application.

Parameters

driver selected from enumeration list in ATRON.H (see
cre_init()). The macro ALL_DRIVERS shuts
down all CRE drivers.

head the identifier of an initialized listener to be closed.
The macro ALL_HEADS will force all listeners
associated with the given driver to be closed.

Return Value

On success Ok

On failure Error0 - no Tron sources have been initialized.

 Error1 - invalid driver type.

 Error2 � uninitialized listener identifier head.

Example
cre_close(ALL_DRIVERS, ALL_HEADS);

40 GOLDSERVE™ Manual

cre_end

Synopsis
#include "cre_tron.h"
void cre_end (void);

Description

This is an alias for cre_close(ALL_DRIVERS, ALL_HEADS) and
is compatible with the ANSI C atexit() function.

Parameters

None

Return Value

None

Example
atexit(cre_end);

 GOLDSERVE™ Manual41

cre_detect

Synopsis
#include "cre_tron.h"
int cre_detect (int prm);

Description

This is an undocumented CRE function that has been formalized
and extended in the AuSIM implementation to retrieve system
parameter values of interest to the application programmer.

Parameters

prm one of the pre-defined parameter values from
ATRNdetectDef enum. Values can be one of the
following list:

AtrnLSTNRinit

AtrnASRCinit

AtrnFRAMErate

AtrnSYSunits

AtrnWAVBUFavail

Return Value

On success non-negative value detected.

On failure Error1 - invalid parameter type.

 Error2 - unable to detect type.

Example
cre_detect(AtrnQRYframerate);

42 GOLDSERVE™ Manual

cre_define_head

Synopsis
#include "cre_tron.h"
int cre_define_head

(int id, int prm, int pts, const void *data);

Description

Allows the user to specify parameters defining the listener model
(head size and pinnae characteristics) and the reference frame for
location coordinates in subsequent calls to cre_locate_head().

Parameters

id the identifier of an initialized listener to be defined.
The macro ALL_HEADS is not supported.

prm one of the pre-defined parameter values from
ATRNheadDef enum. Values can be one of the
following list:

AtrnAURALocular

AtrnAURALpinnae

AtrnAURALcrown

AtrnAURALoffsets

AtrnINTERAURAL

AtrnHRTFfile

AtrnAHMname

AtrnDELAYtable

AtrnDELAYscale

AtrnHRTFmodel

AtrnHEADgain

AtrnDISPLAYtype

AtrnEQleft

AtrnEQright

 GOLDSERVE™ Manual43

pts number of data points given in data. A negative
value may be used by the particular parameter.

data pointer to data of type specific to each parameter.

44 GOLDSERVE™ Manual

PRM Types AtrnAURALocular

 AURAL OFFSET along X axis. Typically zero, or an offset
from ocular axis (eye) coordinates. An offset from the ocular axis,
which is in front of the aural axis, would be negative.

AtrnAURALpinnae

 AURAL OFFSET along Y axis. One-half the positive
distance between ear canal openings.

AtrnAURALcrown

 AURAL OFFSET along Z axis. Typically, either the vertical
separation of ocular and aural axes, or the vertical offset to the head
tracking sensor, which is often placed on top of the head. An offset
from the head crown, which is above the aural axis, would be
negative.

 The single value AURAL OFFSET parameter settings must
have either a positive value pts (= 1) and one float pointed to by
data to set a new value, or pts = 0 to reset the default value in
current units (data will be ignored). These parameters locate the
pinnae with respect to the head location given in each call to
cre_locate_head() along the right-handed head coordinate
axes, of which the positive X-axis extends out in front of the
listener. The values must be in the current units, as set by
cre_init().

Setting to AtrnAURALpinnae affects only the spatial
relationship of sound sources and receivers and not the temporal
delays. (See AtrnINTERAURAL below for temporal control.) The
head location to the head center vector direction determines the
sign of the AtrnAURALocular and AtrnAURALcrown offsets.
Negative values for AtrnAURALpinnae may yield unpredictable
results.

Default offsets are zero, except for AtrnAURALpinnae,
which is one-half the interaural separation (in current units) specific
to the loaded listener map.

AtrnAURALoffsets

 The set of ordered AURAL OFFSETs. With a single call to
cre_define_head(), this parameter can update one to all
AURAL OFFSETs as an ordered array of floats pointed to by data,
of pts items. The ordered sextuple is specified by the enumeration

 GOLDSERVE™ Manual45

ATRNspaceDef (x,y,z,yaw,pitch,roll). Currently, only Cartesian
translations (x,y,z) are supported. All of the single value AURAL
OFFSET parameter rules stated above apply to
AtrnAURALoffsets, including pts = 0 to reset the default values.

AtrnAHMname

 Specify the name of an AHM subject to load. If it is not one
of the pre-loaded subjects, the system will search the AHM files
(located in the directory defined by the HRTF environment
variable) for the specified AHM subject. An error is returned if the
AHM subject is not found.

AtrnINTERAURAL

The AtrnAURALpinnae OFFSET doubled and time scaled.
This parameter combines the spatial control of the
AtrnAURALpinnae parameter above with its associated interaural
delay scaling. AtrnINTERAURAL is the full ear to ear width
(measured to ear canal opening) and thus is twice the
AtrnAURALpinnae value. pts = 1 will set the pinnae offset to one-
half the absolute float value pointed to by data. If pts = 0, data is
ignored and the parameter is reset to the default value. In both
cases, interaural delay values are not scaled to the ratio of the given
interaural size with the default size. If pts = ¯1, the parameter is
set according to data, but the delay scaling is not altered.

AtrnHRTFfile

Specify HRTF filename to be loaded. If pts = 0, data is
ignored and the default HRTF map is reloaded. Otherwise the
filename pointed to by data is loaded from the directory given by
the HRTF environment variable. The pts value should be the
string length of the filename for consistency.

AtrnDELAYtable

Redefine the interaural delay table. This parameter
requires a properly formatted interaural delay table. This
parameter is provided for psychoacoustic research, and is otherwise
undocumented.

AtrnDELAYscale

Scale the current delay table. When pts = 1, this will scale
all interaural delays by the float value pointed to by data. If
pts = 0, data is ignored and the interaural delays are reset to their

46 GOLDSERVE™ Manual

default values.

AtrnHRTFresolve

Sets the filter order trim.

AtrnHRTFmodel

Sets the model to use. This will be one of: NearField,
FarField, or MixedField.

AtrnHEADgain

AtrnHEADgain sets a single floating point dB level for the
final conversion gain in preparing a listener's signal pair for output.
The pts parameter is ignored.
AtrnDISPLAYtype

AtrnDISPLAYtype sets the output type for filtering per
display device. The enum describing the particular device is given
in the pts parameter. Choose one of the following:
eqGenericHeadphone, eqGenericNearphone,
eqSennheiserHD250 or eqSennheiserHD570. data is ignored.
AtrnEQleft

Downloads the display type for left EQ coefficients.

AtrnEQright

Downloads the display type for right EQ coefficients.

 GOLDSERVE™ Manual47

Return Value

On success Ok

On failure Error0 - no Trons have been initialized.

 Error1 - invalid parameter prm.

 Error2 - pts > 0, but data is NULL.

Error3 - AHM is invalid, or load failure.

Error4 - uninitialized listener identifier id.

Example
/* setting offset for a tracking device on top of
the head */
const float offsets[3] = { 0.0, INTERAURAL,
CROWN_OFFSET };
cre_define_head(2, AtrnAURALoffsets, 3, offsets);

48 GOLDSERVE™ Manual

cre_locate_head

Synopsis
#include "cre_tron.h"
int cre_locate_head (int id, const float
*headLoc);

Description

Locates the head of a listener six dimensionally in world
coordinates. It only updates changes from previous state,
recalculating pinnae locations as needed. This function does not affect
processing until a synchronization call to cre_update_audio() is
successful.

Parameters

id the identifier of a listener to be defined.

HeadLoc a pointer to an ordered array of six floats as
follows:

AtrnX world x-axis coordinate.

AtrnY world y-axis coordinate.

AtrnZ world z-axis coordinate.

AtrnYAW angle of -π to π from the world x-
axis about the world z-axis of the
projection of the head�s x-axis onto
the world x-y plane. Looking
down at the x-y plane a counter-
clockwise rotation is positive.

AtrnPTC angle of -π/2 to π/2 from the
world x-y plane of the head�s x-axis
about the world y-axis. Remember
that with x forward and z up, a
positive pitch is down.

AtrnROL angle of -π to π from the world y-
axis about the world x-axis of the
head�s y-axis. From the listener�s
point of view, a clockwise roll of
the head, rolls y into z and is

 GOLDSERVE™ Manual49

therefore positive.

Return Value

On success Ok

On failure Error0 - no Trons have been initialized.

 Error1 - headLoc is NULL.

 Error2 - uninitialized listener identifier id.

Example
const float headLoc[6] = {10.0, 20.0, 30.0, 0.0,
0.0, 0.0};
cre_locate_head(2, headLoc);

50 GOLDSERVE™ Manual

cre_define_source

Synopsis
#include "cre_tron.h"
int cre_define_source

(int id, int prm, int pts, const void
*data);

Description

Allows the user to specify parameters defining the source rendering
model (directional radiation pattern, localization ON/OFF, and
listener linkage). The function is a generic dispatcher that may be
extended in future releases. See parameter descriptions below for
specific behavior.

Parameters

id the zero-based index of the audio source in reference.
The macro ALL_SOURCES is supported.

prm one of the pre-defined parameter values from the
ATRNsrcDef enumeration. This can be one of the
following values:

AtrnRADfields

AtrnRADprofile

AtrnPROFILEpts

AtrnSPATIALoff

AtrnSPATIALon

AtrnHEADlink

AtrnHEADunlink

AtrnSPRDrolloff

AtrnGAINdist

AtrnCHNLinput

AtrnCHNLmidi

AtrnDPLRfactor

 GOLDSERVE™ Manual51

pts the number of points to be read from the data pointer.

data base pointer of an array that has at least pts elements.
An undetectable error will occur if pts is larger than
the number of elements defined in data[]. The
pointer can be NULL, in which case the first pts points
of the existing pattern table will be used.

52 GOLDSERVE™ Manual

PRM Types AtrnRADfields

Allows the user to control the directivity of the sound.
data[] will contain two parameters (both in radians) describing a
field of radiation and a field of intensity. These fields are cones
centered on the source�s boresight direction (principal direction of
aural emission) in which ~90% (for the field of radiation) or ~45%
(for the field of intensity) of the sound energy is dissipated.

AtrnRADprofile

 Defines an audio source�s radiation pattern about its
boresight axis. The radiation profile of a sound source id is
specified in data with an array of relative sound pressure levels in
decibels, sampled equiangularly at pts points from the boresight
direction to anti-boresight direction, inclusive. The boresight
direction is coincident with the source�s positive roll axis (the axis
parallel to the world coordinate X-axis when source yaw and pitch
are zero). All definable radiation patterns are symmetric about the
roll axis (i.e., no rectangular horn speakers). For off-axis angles
from source to listener that fall between sample points, the profile is
linearly interpolated. Designed for empirically sampled data,
AtrnRADprofile also provides effective profile definition with
very few artificial points. The macro MAX_RADPROFILE specifies
the maximum data array size supported. See Figure 2 for
examples of using AtrnRADprofile.

Note: Uniformly radiating sources save considerable
computation and are specially defined by pts = 0. In the special
case of pts = 1, the boresight is defined by
(*data + GAIN_dB_OFF)/2. If a NULL data pointer is given,
the profile is set to the first pts points of the existing table. With
this feature you can pre-load the profile array, and then toggle
directional radiation on and off with pts.

AtrnPROFILEpts

Specifies the number of profile points to use.

AtrnSPATIALoff

Disables localization for this source. The monaural sound
is patched directly through and mixed with the left and right
outputs with a gain (in dB) defined by data. This allows the user
to implement simple panning. If pts = 0, the previous panning
mixture values are used. If pts = 1, the given value is applied to a

 GOLDSERVE™ Manual53

balanced mixture. If pts > 2, an error is returned. If pts < 0,
localization is re-enabled, which is the default. The source is
passed through a flat filter, so the latency remains the same as if it
were localized.

AtrnSPATIALon

Enables source localization. This is the default.

AtrnHEADlink

By setting this parameter, the source maintains its relative
position and orientation to the listener�s head for all head positions
and attitudes given. When AtrnHEADlink is enabled, all calls to
cre_locate_source() establish a new relative position as a
difference of the global coordinates of head and source locations
given. data is ignored. The pts argument is interpreted as the
head index. pts < 0 unlinks the sound to all listener head
positions.

AtrnHEADunlink

Disables source to head linkage. This is the default.

AtrnSPRDrolloff

AtrnSPRDrolloff defines a single float value multiplier
for that particular source of the global spreading-loss roll-off
exponent defined in cre_define_medium(). The value must be
positive and "reasonable". Reasonableness depends on the global
rolloff value.
AtrnGAINdist

AtrnGAINdist defines the distance at which the gain is
specified.
AtrnCHNLinput

AtrnCHNLinput allows zero, one, or more physical live
audio input channels to be mapped to a particular source. pts
specifies how many and data is the array of integers specifying
which channels to map.
AtrnCHNLmidi

AtrnCHNLmidi allows zero, one, or more MIDI audio
input channels to be mapped to a particular source. pts specifies
how many and data is the array of integers specifying which MIDI
channels to map.
AtrnDPLRfactor

54 GOLDSERVE™ Manual

AtrnDPLRfactor sets the Doppler exaggeration. pts
always specifies the listener id, which may be ALL_HEADS. If
data is NULL, the Doppler factor is reset to its default of 1.0.
Setting Doppler factor to 0.0 disables it completely.

Return Value

On success Ok

On failure Error0 - audio source id is out of range, or no
Tron sources have been initialized.

 Error1 - invalid parameter prm.

 Error2 - pts is out of range.

 Error3 - parameter specific error, see parameter
descriptions

Example
const float rad_table[4] =

{ 0.0, -5.0, -20.0, -60.0 };
cre_define_source (mysource, AtrnRADprofile, 4,
rad_table);

Figure 4: cre_define_source() examples for two different
radiation tables.

rad_table[3] =
{0.0, -20.0, -60.0}

rad_table[4] =
{0.0, -5.0, -20.0, -60.0}

-20 dB

-60 dB

0 dB

-5 dB

-60 dB

0 dB

-20 dB

 GOLDSERVE™ Manual55

cre_locate_source

Synopsis
#include "cre_tron.h"
int cre_locate_source

(int id, const float *sourceLoc);

Description

Locates an audio source id in (x, y, z, yaw, pitch, roll) world
coordinates. This function does not affect processing until a
synchronization call to cre_update_audio() is successful.

56 GOLDSERVE™ Manual

Parameters

id the zero-based index of the audio source to be
located. The macro ALL_SOURCES is not
supported. To locate multiple audio sources,
multiples calls cre_locate_source() are
necessary.

SourceLoc a pointer to a sextuple of floats:

AtrnX world x-axis coordinate.

AtrnY world y-axis coordinate.

AtrnZ world z-axis coordinate.

AtrnYAW angle of -π to π from the world x-
axis about the world z-axis of the
projection of the source�s x-axis
onto the world x-y plane. Looking
down at the x-y plane, a counter-
clockwise rotation is positive.

AtrnPTC angle of -π/2 to π/2 from the
world x-y plane of the source�s x-
axis about the world y-axis.
Remember that with x forward and
z up, a positive pitch is down.

AtrnROL angle of -π to π from the world y-
axis about the world x-axis of the
source�s y-axis. From the source�s
point of view, a clockwise roll of
the sound rolls y into z and is
therefore positive.

Return Value

On success Ok

On failure Error0 - audio source id is out of range, or no
Tron sources have been initialized.

 Error1 � sourceLoc is NULL.

 GOLDSERVE™ Manual57

Example
const float srcloc[6] =

{-10.0, -20.0, 0.0, 0.0, 0.0, 0.0};
cre_locate_source (4, srcloc);

Remarks

Only the first three floats are used when the audio source is in
uniform radiation mode. However, as a safe programming
practice, you should always maintain pointers to six-element data
structures. AtrnROL is not presently used since non-uniform
radiation is symmetric about the boresight roll axis, but it should be
maintained for future compatibility.

58 GOLDSERVE™ Manual

cre_amplfy_source

Synopsis
#include "cre_tron.h"
int cre_amplfy_source (int id, float dB);

Description

Sets the loudness of a source to 0 dB at 21/rollofexp units from the
listener. This distance is ~1.96 inches from the head if units of
inches (default) are being used. To alter this distance, scale the base
2 by the macro GAIN_RATIO. Distant sound sources may need to
be set much higher (as much as +30 dB), in order to be audible at
the listener�s position.

Parameters

id the zero-based index of the sound source to be
amplified. The macro ALL_SOURCES is supported.

dB the amplification level in decibels. The macro
GAIN_dB_OFF is provided to definitively turn off a
sound source. Any value less than ¯120 dB is
interpreted as off.

Return Value

On success Ok

On failure Error0 - audio source id is out of range, or no
Tron sources have been initialized.

 Error1 - dB is unreasonable. To prevent floating
point overflows, dB should not exceed
20 * EXPONENT_LIMIT, defined in ATRON.H.

Example
cre_amplfy_source(ALL_SOURCES, 1.0);

Remarks

This is the most misunderstood function in the CRE_TRON API.
Attenuation over distance is a very important 3D cue, over which
the system must have dynamic range to apply. As a sound source
gets closer to a receiver, its sound pressure level must increase
exponentially (nominally 6 dB for every half of the distance), but
there is a maximum volume that audio hardware can (and, for

 GOLDSERVE™ Manual59

safety reasons, should) reach. We have set the library so that the
maximum volume is reached for a 0 dB at 2.5 inches from the
receiver. If a source is within this range, our software can provide
very little distance cue. If the source is mostly far-field (never
comes near the receiver), you can optimize the dynamic range by
setting the gain to a higher value. A table relating source amplitude
setting to clipping distance may be found in ATRON.H.

If you need to adjust the relative amplitude of the source, it should
be done at the synthesis of the sound. cre_amplfy_source()
will provide such relative amplitude service, but you run the risk of
ruining the 3D effect for near field sounds.

60 GOLDSERVE™ Manual

cre_select_source

Synopsis
#include "cre_tron.h"
int cre_select_source (int id, int channel);

Description

Selects from among the available hardware analog input channels
for a given source id for all listeners. The implementation of this
function is hardware specific and the command may not be
desirable globally. This function is not defined for all drivers, such
as Atrn_CMP1, which uses all inputs available. This function may
produce unexpected results when used with different drivers
rendering the same audio source to different listeners.

This has the same effect as cre_define_source(id,
AtrnCHNLinput, 1, channel)

Parameters

id the zero-based index of the audio source to be
patched. The macro ALL_SOURCES is supported.

Channel the zero-based index of the analog input channel
on the target hardware.

Return Value

On success Ok

On failure Error0 - audio source id is out of range or no
Tron sources have been initialized.

 Error1 - invalid channel.

 Error2 - failure to execute patch.

Example
cre_select_source(0, 3);

 GOLDSERVE™ Manual61

cre_pmeter_source

Synopsis
#include "cre_tron.h"
int cre_pmeter_source (int id, float *power);

Description

Measures the instantaneous power of the sound source. The
measured value is written to the float that power points to.

Parameters

id the zero-based index of the sound source to be
amplified. The macro ALL_SOURCES is supported.

power pointer to which the calculated power is written.

Return Value

On success Ok

On failure Error0 - audio source id is out of range, or no
Tron sources have been initialized.

Example
cre_pmeter_source(id, &power);

62 GOLDSERVE™ Manual

cre_define_medium

Synopsis
#include "cre_tron.h"
int cre_define_medium

(int prm, int pts, const void *data);

Description

Allows the user to specify parameters to model the medium
through which the sound propagates (absorption filter distance and
spreading roll-off exponent). The function is a generic dispatcher
that may be extended in future releases. See parameter descriptions
below for specific behavior.

Parameters

rm one of the pre-defined parameter values from the
ATRNmedDef enumeration. This can be one of the
following list:

 AtrnROLLOFF

AtrnABSORBdist

AtrnMEDDEFlast

pts the number of points to be read from the data
pointer.

data a pointer to at least pts data points. An
undetectable error will occur if pts is larger than
the number of points available to read. The pointer
can be NULL, in which case the first pts points of
the existing pattern table will be used.

PRM Types

AtrnABSORBdist

 Atmospheric absorption control distance. The absorption
distance controls the amount of extra high frequency fall-off over
distance that is applied to simulate atmospheric absorption.
Currently, this parameter can only be set to apply to all sources.
The pts argument must be 1 in order to have data set the distance
in current units. pts = 0 or pts < 0 will reset the absorption

 GOLDSERVE™ Manual63

distance to its default value, defined by the macro
ABSORPTION_DISTANCE (in ATRON.H). The effect of the
absorption filter can be minimized by setting this value to an
arbitrarily large distance. However, it can be disabled entirely by
passing a value of 0.0 or less.

 Remarks: The given distance affects the amount of
atmospheric absorption filtering at a given source-to-receiver range
by a factor of the range divided by the sum of the range and the
absorption distance. Hence, the absorption filter will be applied at
50% when the range is equal to the absorption distance.

 AtrnROLLOFF

 The roll-off exponent due to spreading power loss. The
spreading roll-off exponent parameter sets the rate at which sound
amplitude is attenuated over distance to yield cues in the third
dimension. Currently, this parameter can only be set to apply to all
sources. The pts argument must be set to one to have the float
value pointed to by data set the spreading roll-off exponent, or
may be zero or negative to reset the default value, defined by the
macro SPREADING_ROLLOFF in ATRON.H. An out of range
exponent value will return an error. The exponent must be greater
than zero and less than the value defined by the macro
EXPONENT_LIMIT in ATRON.H.

Remarks: In a free sound field, spreading loss is -6 dB for
every doubling of the distance (i.e., gain is proportional to 1.0 / R).
However, there are few free sound fields in the real world, so the
apparent spreading loss depends on the acoustic impedance of the
propagation medium and elements in the sound field. Since the
Tron is simulating a virtual anechoic environment, a nominal roll-
off exponent of 1.0 sounds steep. Typically, roll-off exponents in
between 0.5 and 1.2 are of interest.

64 GOLDSERVE™ Manual

Return Value

On success Ok.

On failure Error0 � no Tron sources have been initialized.

 Error1 � invalid parameter prm.

 Error2 � pts is non-zero, but data is NULL.

Example
/* set distance in current units */
float absorb_dist = 100.0;
cre_define_medium

(AtrnABSORBdist, 1, &absorb_dist);

 GOLDSERVE™ Manual65

cre_open_wave

Synopsis
#include "cre_wave.h"
wavFt *cre_open_wave

(const char *wavefile, int mode);

Description

Opens a sound file referred to by the filename wavefile from the
GoldServe�'s disk, returning a pointer to the allocated wavefile
structure wavFt. Sound file control, such as playback through a
particular source, is effected through cre_ctrl_wave().
Currently, the only formally recognized sound file format is RIFF
(MS Windows .WAV format). Note that, independent of which
driver is being used, both 22.05 kHz and 44.1 kHz wave files can be
opened and played back.

Note: All calls to cre_open_wave() should precede any call to
cre_init() and every cre_open_wave()should be paired with
a corresponding cre_close_wave(). Wave file open-close pairs
are independent of but must enclose cre_init()-
cre_close()pairs. The maximum number of concurrently open
wave files is determined by the amount of system memory
available (see remarks below).

Parameters

Wavefile a string which specifies the filename to be loaded
from disk. If the filename extension is �.WAV’, the
file must have a valid RIFF format header.

mode This parameter is no longer needed and is ignored.

Return Value

On success wavFt* - the returned structure will be empty. See
cre_ctrl_wave(s, wave, WaveCTRL FSTAT,
NULL)command to filled the wavFt structure.

On failure NULL - filename wavefile not found, could not be
opened, was invalid, or system out of memory.

Example
char *fname = "test.wav";
wavFt *wave = cre_open_wave(fname, NULL);

66 GOLDSERVE™ Manual

if (wave == NULL)
 printf("%s failed to open.\n",fname);

Remarks

All wave files are loaded into memory. The maximum number of
concurrently open wave files is determined by the amount of
memory available in the GoldServe� system. 16-bit wave files will
require twice the amount of system memory as disk space. Because
loading the data from the hard disk into memory takes some time
(about 50 milliseconds per 100 kB of file space), all
cre_open_wave() calls must take place before any calls to
cre_init().

 GOLDSERVE™ Manual67

cre_ctrl_wave

Synopsis
#include "cre_wave.h"
int cre_ctrl_wave
 (int src, wavFt *wave, int cmd, void *data);

Description

Requests the host to control the waveform wave according to the
command cmd, which may be related to source src. This function
is a generic dispatcher that may be extended in future releases. See
command descriptions below for specific behavior.

Parameters

src the zero-based index of the audio source in
reference. The macro ALL_SOURCES is not
supported.

wave a pointer to the waveform structure affected by all
commands except WaveCTRL_STOP.

cmd one of the pre-defined command values from the
wave_ctrl enumeration. This must be one of the
following:

WaveCTRL_RFRS

WaveCTRL_PSET

WaveCTRL_RWND

WaveCTRL_NOLP

WaveCTRL_STRT

WaveCTRL_PLAY

WaveCTRL_LOOP

WaveCTRL_STOP

WaveCTRL_STAT

WaveCTRL_SYNC

WaveCTRL_PTCH

WaveCTRL_LPST

68 GOLDSERVE™ Manual

data NULL, except for WaveCTRL_PTCH and
WaveCTRL_LPST

 GOLDSERVE™ Manual69

CMD Types WaveCTRL_RFRS

 Refreshes the wave file image from disk.

WaveCTRL_PSET

 Sets the signal pointer to the specified sample. data will
hold the zero-based index of the sample relative to the base sample.

WaveCTRL_RWND

 Rewinds the current frame position of waveform to its first
frame. This will work even while playing. Rewind is useful if the
waveform was stopped before finishing its full selection.

WaveCTRL_NOLP

 Unsets the loop flag, allowing the source to play to its end
and stop.

WaveCTRL_STRT

 Plays the waveform from its beginning (rewinding if
necessary), patching it through to source src.

WaveCTRL_PLAY

 Plays the waveform starting at the current frame position,
patching it through to source src. By default, playing does not
loop.

WaveCTRL_LOOP

 Turns on looping and starts playing the waveform from its
current frame position. Turning on looping means that when
playback reaches the end of the sound file, the signal is
automatically rewound to its beginning. Looping continues, until
the playback is either stopped (WaveCTRL_STOP), or the loop flag
becomes disabled (WaveCTRL_NOLP). See WaveCTRL_LPST for
information on setting loop points.

WaveCTRL_STOP

 Stops playing any waveform attached to source src,
maintaining that waveform's current frame position.

WaveCTRL_STAT

 Tests the current waveform wave status with respect to
given source src. Alternatively, this command can check wave

70 GOLDSERVE™ Manual

status for any source with src = ¯1, or check src for any waveform
with wave = NULL. Returns a 4-bit value, with each bit
representing a state of either wave or src:

bit 0 - wave is playing on source src

bit 1 - wave playing on some other source.

bit 2 - src is playing the wave.

bit 3 - src is playing some other waveform.

 A return of zero means that neither wave nor src are busy.

WaveCTRL_SYNC

 Specifies an already playing wavefile with which to
synchronize. This synchronization will take effect on a subsequent
call to cre_update_audio(). Setting data = NULL will turn off
synchronization.

Example of WaveCTRL_SYNC usage:

cre_ctrl_wave(src1, wave1, waveCTRL_SYNC, wave0);

cre_ctrl_wave(src0, wave0, waveCTRL_PLAY, NULL);

cre_ctrl_wave(src1, wave1, waveCTRL_PLAY, NULL);

WaveCTRL_PTCH

 Sets the pitch shift factor pointed to by data (float *) for
wavefile wave (BMP2 and BMP3 drivers only). A value of 1.0
(default) results in no pitch shifting, a value of 2.0 (maximum) will
double the pitch of the wavefile, a value of 0.5 (minimum) will half
the pitch of the wavefile. data = NULL will disable pitch shifting.

 WaveCTRL_LPST

 Sets loop start, loop end, and loop count parameters. src is
ignored, data is a pointer to an array of three longs:

 data[0] = loop start (unsigned long, in samples)

 data[1] = loop end (unsigned long, in samples)

 data[2] = loop count (signed long, ¯1 = infinte looping)

 GOLDSERVE™ Manual71

Return Value

On success Ok, or bit code (see WaveCTRL_STAT)

On failure Error0 - audio source src is out of range, or no
Tron sources have been initialized.

 Error1 - waveform structure pointed to by wave
is invalid.

 Error2 - command cmd is unsupported.

 Error3 - wave already playing on another source

 Error4 - failed attempt to perform

Example
wavFt *wavep = cre_open_wave("TEST.WAV", 4);
cre_ctrl_wave(0, wavep, WaveCTRL_LOOP, NULL);
… /* do other things while sound plays */
cre_update_audio(); /* tend to playback buffers */
… /* do other things while sound plays */
cre_ctrl_wave(0, wavep, WaveCTRL_STOP, NULL);
cre_close_wave(wavep);

72 GOLDSERVE™ Manual

cre_close_wave

Synopsis
#include "cre_wave.h"
int cre_close_wave (wavFt *wave);

Description

Closes the wavefile, if open, and frees the signal and the wave
structure. If wave is attached to a sound source and is playing, it
will be stopped before the wave file is closed. In order to properly
deallocate resources, each (successful) call to cre_open_wave()
must be balanced with a call to this routine.

Parameters

wave a pointer to the waveform structure to be closed.

Return Value

On success Ok

On failure Error1 - invalid wave structure.

Example
wavFt *wavep = cre_open_wave("TEST.WAV",4);
… /* listen to the music */
cre_close_wave(wavep);

 GOLDSERVE™ Manual73

cre_send_midi

Synopsis
#include "cre_midi.h"
int cre_send_midi

(int src, const unsigned char *midistr);

Description

Sends a string of MIDI commands midistr (terminated by
MIDI_MsgTerm* as defined in CRE_MIDI.H) to the MIDI port on
the Tron card that is responsible for source src. A well constructed
MIDI string is assumed. See CRE_MIDI.H for some pre-defined
MIDI strings.

Parameters

src the zero-based index of the audio source in
reference. The macro ALL_SOURCES is supported
(same message is sent once to each port, i.e., per
pair of sources).

midistr a character string (of any length) of MIDI
commands, terminated by MIDI_MsgTerm.

Return Value

On success Ok

On failure Error0 - audio source src is out of range or no
Tron sources have been initialized.

 Error1 - MIDI string midistr is invalid.

Example
MIDIbyte MyFavoriteNote[] =
 {0x90, 0x3C, 0x40, MIDI_MsgTerm };
cre_send_midi(1, MyFavoriteNote);

* The message terminator MIDI_MsgTerm is not sent to the port.

74 GOLDSERVE™ Manual

cre_set_midi

Synopsis
#include "cre_midi.h"
int cre_set_midi

(int src, int cmd, void *data);

Description

Provides necessary services for the Proteus synthesizer on a
Beachtron card, which is associated with source src. The function
is a generic dispatcher that may be extended in future releases. See
command descriptions below for specific behavior.

Parameters

src the zero-based index of the audio source in
reference. The macro ALL_SOURCES is supported.
In this mode, the TRON MIDI messages are
received.

cmd an integer which specifies one of four Proteus
commands:

PROTEUS_RESET

to reset the Proteus synthesizer to boot-up
condition.

PROTEUS_INTERNAL

to select internal MIDI string input. In this
mode, the TRON MIDI messages are
received.

PROTEUS_EXTERNAL

to select external MIDI string input. In this
mode, the synthesizer only receives messages
through its external port and ignores
messages passed by TRON MIDI functions.

PROTEUS_LOAD_PRESET_FILE

to map a preset file specified by the NULL
terminated character string filename pointed
to by data. Returns Error3 if the preset file

 GOLDSERVE™ Manual75

does not exist or is invalid, or if the load fails.

data (optional) Set to NULL, except when used
with PROTEUS_LOAD_PRESET_FILE, where
it is set to a null-terminated character string.

Return Value

On success Ok

On failure Error0 - audio source src is out of range or no
Tron sources have been initialized.

 Error1 - invalid command cmd.

 Error2 - command cmd requires data, but data is
NULL.

 Error3 - command specific error. See descriptions
above.

Example
cre_set_midi(2, PROTEUS_RESET, NULL);

76 GOLDSERVE™ Manual

cre_msg_midi

Synopsis
#include "cre_midi.h"
int cre_msg_midi

(int src, int msg, int chnl, int data1,
int data2);

Constructs and sends a MIDI channel voice message to the proper
Proteus synthesizer channel or MIDI port associated with source
src, described by message type msg, on Tron MIDI channel chnl,
and with data arguments data1 and data2.

A MIDI channel voice message consists of an 8-bit status byte
including the message type and target MIDI channel, followed by
one or two 7-bit data bytes. cre_msg_midi() forms common
MIDI strings for targeting synthesized sounds to localized Tron
sources. The function properly bit-clips all parameters, and then
assembles a MIDI status byte via the following formula:

status_byte = (0x80 | ((msg&0x07) << 4)
| ((chnl&0x07) + 8*(id%BMP1_SRCS)))

Finally, it appends the correct number of 7-bit clipped data bytes,
according to the table below, and sends the resulting message
string to the Proteus.

Message Macro

msg

Data Byte 1

data1

Data Byte 2

data2

MIDI_NOTE_OFF key number velocity

MIDI_NOTE_ON key number velocity

MIDI_AFTERTOUCH key number pressure amount

MIDI_CONTROL control number control value

Description

MIDI_PATCH program number (none)

 GOLDSERVE™ Manual77

MIDI_CHNLPRESS pressure value (none)

MIDI_PITCHBEND pitch bend pitch change

Key numbers can be easily derived using the OCTAVE and NOTE
enumeration lists defined in CRE_MIDI.H and the following
formula:

key_number = (octave * 12) + note

Parameters

src the zero-based index of the audio source in
reference. The macro ALL_SOURCES is supported.

msg an integer that specifies a MIDI channel voice
message (see above table for valid messages).

chnl the MIDI channel to which the command is to be
applied

data1 first data argument for command

data2 second data argument (if necessary) for command.

Return Value

On success Ok

On failure Error0 - audio source src is out of range or no
Tron sources have been initialized.

 Error1 - invalid MIDI message.

Error2 - chnl out of range.

Example
cre_msg_midi(mysrc, MIDI_NOTE_ON, 0,

(octave*12)+note, velocity);

Remarks While this function is designed to assist assembling simple MIDI
messages without a MIDI sequencer, we recommend that the
inexperienced MIDI programmer invest in a good MIDI reference
to fully understand the appropriate use of the interface.

78 GOLDSERVE™ Manual

cre_set_rel_pos

Synopsis
#include "cre_tron.h"
int cre_set_rel_pos

(int head, int src, float azim, float elev,
float gain);

Description

Locates sound source src relative to listener head. If the sound
source is imagable (i.e., it is processed relative to its environment as
in the Acoustic Room Simulation) and the rendering model has
been set to be near-field, the relative coordinates will be converted
to world coordinates (x,y,z). Otherwise, the sound will be
processed directly in polar coordinates, short circuiting much
processing overhead.

Note: This function does not affect a sound source�s directional
boresight or its current status with respect to other listeners.

Parameters

head the identifier of an initialized listener from which
the source is relatively located. The macro
ALL_HEADS is supported.

src the zero-based index of the audio source to be
amplified. The macro ALL_SOURCES is not
supported. To locate multiple audio sources, this
function must be applied for each sound source.

azim counter-clockwise rotation (in radians) from
straight ahead of the source�s projection onto the
head�s median plane.

elev angular elevation (in radians) from the head�s
median plane to the source. Note that, as opposed to
pitch, an elevation is positive above the plane and
negative below it.

gain linear amplitude from 0.0 to 1.0, for the mixed-field
and far-field models. No range is computed, hence
acoustic rendering effects such as reflected source

 GOLDSERVE™ Manual79

images, Doppler pitch shift, and atmospheric
absorption will be interpreted as though the source
were located at the head�s center. For near-field
models, gain is interpreted as a range greater than
1.0 in current units with the rendering effects
including gain computed normally.

Return Value

On success Ok

On failure Error0 - audio source src is out of range

 Error1 - gain argument out of range for current
rendering model.

 Error2 - uninitialized listener identifier head

Example
cre_set_rel_pos(0, src, 0.0, 0.0, 1.0);

80 GOLDSERVE™ Manual

cre_get_polar

Synopsis
#include "cre_tron.h"
struct {float azim, elev, rang; } polar;
int cre_get_polar

(int head, int src, float *polar);

Description

Retrieves the relative position in polar coordinates of sound source
src with respect to listener head. If the sound source was
relatively positioned, either the rendering system is imaging
reflections or the rendering model is far-field. The information
should have been computed in the most recent update but, if not, it
will be computed from global coordinates. The retrieved polar
coordinates are written to the polar structure.

Parameters

head the identifier of an initialized listener from which
the source is relatively located. The macro
ALL_HEADS is not supported.

src the zero-based index of the audio source to which
the bearing is requested. The macro ALL_SOURCES
is not applicable.

polar a pointer to storage for three floats. Upon success,
three floats will be copied into the storage pointed
to by polar: azimuth, elevation (in radians), and
range (in current units).

Return Value

On success Ok

On failure Error0 - audio source src is out of range

 Error1 - polar is NULL

 Error2 - uninitialized listener identifier head

Example
struct { float azim, elev, rang; } polar;
cre_get_polar(0, src, &polar);

 GOLDSERVE™ Manual81

Remarks

s function is provided for utility only.

82 GOLDSERVE™ Manual

cre_test_atron

Synopsis
#include "atron.h"
int cre_test_atron (int verbose);

Description

Tests the connection to the localization server via the ATRON
protocol and gathers a text string from the server. If verbose is
non-zero, it will print this string to stdout.

Important: This function runs verbosely from a console window.

Parameters

verbose verbose flag

Return Value

On success Returns the alphabetical index of the first letter of
this string, which is one of:

 1 = Acoustetron

 2 = Beachtron Server

 3 = Convolvotron Server

 4 = GoldServe Server

13 = Mtron.

On failure Error1 - a connection could not be made.

 Error2 � response from client was incomplete

Example
cre_test_atron(1)

 GOLDSERVE™ Manual83

cre_fetch_message

synopsis #include “cre_tron.h”
 int cre_fetch_message
 (int msg, char *buffer, int bufsize)

Description
 Retrieves messages from the output buffer. Can be used to assist with de-
bugging and to provide a means of checking for problems. The messages are copied
into a buffer so that they can be read, printed to the screen etc.

Parameters
 msg
If msg >=0 then the message which is retrieved is the one at the index msg from the
END of the list of messages. The smaller the value of msg, the more recent the
message. If msg < 0 then this function will retrieve as many messages as possible
beginning with the most recent until the buffer is full.

 buffer
 A pointer to the location where the retrieved messages will be stored as a string.

 bufsize
 The maximum number of characters which can be stored in the buffer. Once the
end of the buffer is reached, no more characters will be stored.

Return value
 If successful � returns the number of characters that have been copied into
buffer.

 If unsuccessful � returns 0 if there is no message to retrieve or if the
message can not be stored in buffer.

Example
char previous_msgs[256];
cre_fetch_message(-1, previous_msgs, 256);

84 GOLDSERVE™ Manual

cre_fetch_error

synopsis #include “cre_tron.h”
 int cre_fetch_error
 (int msg, char *buffer, int bufsize)

Description
 Retrieves error messages from the error buffer. Can be used to assist with
de-bugging and to provide a means of checking for problems. The error messages
are copied into a buffer so that they can be read, printed to the screen etc.

Parameters
 msg
 If msg >=0 then the error which is retrieved is the one at the index msg from the
END of the list of error messages. The smaller the value of msg, the more recent the
message. If msg < 0 then this function will retrieve as many error messages as
possible beginning with the most recent until the buffer is full.

 buffer
 A pointer to the location where the retrieved messages will be stored as a string.

 bufsize
 The maximum number of characters which can be stored in the buffer. Once the
end of the buffer is reached, no more characters will be stored.

Return value
 If successful � returns the number of characters that have been copied into
buffer.

 If unsuccessful � returns 0 if there is no error message to retrieve or if the
message can not be stored in buffer.

Example
char last_error[256];
cre_fetch_message(0, last_error, 256);

 GOLDSERVE™ Manual85

Appendix 1 Glossary

� 3D sound: refers to the fact that sounds in the real world are three-dimensional.
Human beings have the ability to perceive sound spatially, meaning that they can
hear where a sound is coming from, and where different sounds are in relation to
their surroundings and in relation to each other. There are three main pieces of
information that are essential for the human brain to perform these functions:

� ITD, or Interaural Time Difference, means that, unless a sound is located at
exactly the same distance from each ear (e.g. directly in front), it will arrive at one
ear before it arrives at the other. For example, if the sound arrives at the right ear
before the left ear, the brain knows that the sound is coming from somewhere to the
right.

� IID, or Interaural Intensity Difference, is similar to ITD. It says that if a sound is
closer to one ear, the sound�s intensity at that ear will be higher than the intensity at
the other ear, which is not only further away, but usually receives a signal that has
been shadowed by the listener�s head.

� Finally, the trickiest part of localization is the fact that a sound bounces off a
listener�s shoulders, face, and outer ear, before it reaches the eardrum. The pattern
that is created by those reflections is unique for each location in space relative to the
listener. A human brain can therefore learn to associate a given pattern with a
location in space.

 Since 3D sound consists of two signals (left and right ear) it can be rendered
on conventional stereo equipment, preferably headphones (because of the clean
separation of the two signals). The 3D sound produced by a direct path AuSIM3D
system is combined with sound reflections (wavetracing) to create a very high level
of realism and immersion in a sound space.

� ambient channel: a way of displaying sounds as coming from everywhere - all
around the listener. This is useful for background music or ambient sounds such as
rain.

� atmospheric absorption: the attenuation of sounds as they propagate through a
medium. For example, in air the high frequency components of sound attenuate
faster than the lower frequency components.

� AuSIM3D: binaural, immersive, interactive, real-time 3D audio technology by
AuSIM, Inc.

86 GOLDSERVE™ Manual

� auralization: the process of rendering audio by physically or mathematically
modeling the sound field of a source in space in such a way as to simulate the
binaural listening experience at any given position in the modeled space.

� binaural: two audio tracks, one for each ear (as opposed to stereo, which is one
for each speaker). Binaural sounds are what we hear in everyday life.

� boresight axis: axis defined by the boresight direction (see boresight direction)

� boresight direction: principal direction of aural emission of a sound source

� Chapin, William: the founder of AuSIM Inc. and inventor of the Crystal River
Engineering Acoustetron, WaveTracing, and AuSIM3D GoldServe Audio
Localization Server. Often confused with Harry Chapin, his distant cousin and
legendary performing artist, Harry is deceased.

� Convolvotron: the world�s first multi-source, real-time, digital localization
system built by Crystal River Engineering for NASA in 1987.

� direct path: the direct path from a sound source to a listener�s ears (as opposed to
the path that includes reflections off surfaces). The direct path allows a listener to
tell where each sound is coming from, 360 degrees both in azimuth and elevation.
This is the main concept of any 3D sound system.

� Doppler effect: the change in frequency of a sound wave due to the relative
motion between a sound source and listener. For example, when a car moves past
you while sounding its horn, you will hear a drop in pitch as the car passes.

� extended stereo: a term that summarizes a number of techniques that involve
processing of traditional stereo sounds with the goal of making them appear to
originate from a range which extends beyond the physical speaker locations. The
effect is often limited to a planar arc in front of the listener with everything at the
same elevation. Extended stereo effects tend to be incompatible with headphone
listening and to only have the intended effect if the listener is located at a particular
spot in relation to the speakers (see �sweet spot�).

� Fisher, Scott: the founder of Telepresence Research and original director of the
Virtual Interactive Environment Workstation (VIEW) project at NASA's Ames
Research Center. Often confused with Scott Foster, his friend and the founder of
Crystal River Engineering and inventor of the Convolvotron, both hail from MIT in
the 1970's and the Atari Research Labs in the early 1980's. The VIEW project, started
in 1984, determined the need for virtual interactive aural imaging and initiated the
development of the Convolvotron.

 GOLDSERVE™ Manual87

� Foster, Scott: the founder of Crystal River Engineering and inventor of the
Convolvotron. Often confused with Scott Fisher, his friend and founder of
Telepresence Research, both hail from MIT in the 1970's and the Atari Research
Labs in the early 1980's. Scott Foster is considered by many to be the founder of
interactive localized audio, since his Convolvotron was the first device to bring the
technology to auralization.

� gain: the amplification or attenuation of a sound source, usually measured in dB
(decibels). 0 dB means no amplification and no attenuation. A positive value
amplifies a source, a negative value attenuates it.

� HRTF: HRTFs, or Head Related Transfer Functions, are sets of mathematical
transformations that can be applied to a mono sound signal. The resulting left and
right signals are the same as the signals that someone perceives when listening to a
sound that is coming from a location in real-life 3D space. HRTFs are the core
concept behind AuSIM3D, since they contain the information that is necessary to
simulate a realistic sound space (see localization). Once the HRTF of a generic
person is captured, it can be used to create AuSIM3D sound for a large percentage
of the population (most people�s heads and ears, and therefore their HRTFs, are
similar enough for the filters to be interchangeable).

� IID: Interaural Intensity Difference, see �3D sound�.

� ITD: Interaural Time Difference, see �3D sound�.

� listener: an object in a sound space that is sampling (�listening to�) sound,
usually a head with associated HRTF characteristics.

� materials: by absorbing sound energy at different frequencies, the material of
which an object is made effects the way the sound reflects off and transmits through
the object. A carpeted room sounds very different from a glass room. An object�s
material characteristics can be measured empirically by recording known sounds as
they bounce off materials.

� medium: see �atmospheric absorption� and �transmission loss�.

� MIDI: MIDI, or Musical Instrument Digital Interface, is a standard control
language that is used for communication between electronic music and effects
devices.

� mono/monophonic: refers to a single audio signal, usually rendered on a single
speaker. Mono sounds appear to originate from the speaker, or from the center of a
listener�s head in the case of headphones.

� psychoacoustics: an area of psychology that studies the structure and
performance of human auditory perception.

88 GOLDSERVE™ Manual

� quadraphonic sound: refers to four audio signals, usually rendered on four
separate speakers. Quadraphonic sounds appear to originate from somewhere in-
between the four speakers. The inconvenience associated with the amount of
equipment necessary to produce quadraphonic sound, coupled with the fact that it
is not compatible with conventional stereo equipment (and therefore headphones),
makes quadraphonic sound an unpopular choice.

� radiation pattern: each sound-emitting object can optionally radiate sound in a
certain pattern (rather than uniformly all around it). For example, a head should
emit sounds in the direction that its nose is pointing.

� reflection: a sound reflection off a surface. It gives a listener information about
the listening environment and the location and motion of sound sources. See
�surfaces�.

� refraction: sounds waves refract or bend as they travel around the edges and
through openings of objects.

� reverberation: or reverb, refers to the sum of all sound reflections in a listening
environment.

� sample rate: the number of samples per second at which a sound is processed
(usually ranges from 8kHz to 50kHz (CD quality is 44.1kHz, or 44,100 samples per
second).

� source: refers to an object in 3D space that emits sound. The actual sound signal
that it sends out can be a live signal, a wave file, or any other audio signal. A 3D
sound device is often rated on how many different sources it can independently
position at any one time. Realistic sound spaces can be created with as few as four
concurrent sources; very complex spaces can have dozens of separate sounds at a
time.

� speaker arrays: an installation of multiple speakers in a certain pattern, usually
designed to create a sound field within the space defined by the speakers. Examples
are stereo speakers, or quadraphonic speakers.

� stereo/stereophonic: refers to two audio signals, usually rendered on two
separate speakers. Stereo sounds appear to originate from somewhere between the
two speakers, or between the ears of a listener in the case of headphones.

� surfaces: sounds not only travel to a pair of ears on a direct path, but they also
bounce off objects in the world. Most natural listening environments contain at least
a sound reflecting ground plane, such as a floor. Therefore, reflecting objects are
necessary to make virtual environments sound natural and realistic. They help
listeners navigate and enhance the overall effect of immersion in a virtual
environment. Almost as important as reflections, is the absence of a reflection. For
example, the brain can tell the change in a sound space when A reflection is
removed by opening a door or a window.

 GOLDSERVE™ Manual89

� sweet spot: the location where a listener has to be placed to get the optimal effect
when listening to a specific speaker setup.

� transmission loss: sounds get absorbed as they travel through objects such as
walls (similar to atmospheric absorption in the case of traveling through a medium).
Transmission loss models are needed to realistically simulate sounds outside a
window or in the next room.

� update rate: the number of times that a specific instance of a sound space is re-
computed and updated per second. Each time any object moves (most often the
listener), the space needs to be updated. The higher the update rate, the faster
objects can move without creating audio artifacts, such as clicking. Audio update
rates generally range from a minimum of 20Hz to 100Hz. Video update rates are
usually in the same range (TV signals are updated at 30Hz).

� wave file: a digital sound file stored in the Microsoft RIFF file format.

� wavetracing: the idea of tracing sound waves as they emit from a source and
bounce around an environment (walls, objects, openings). The resulting sound
reflections are rendered to a listener to create a more convincing 3D effect, as well as
a more immersive, familiar, and realistic sound space.

90 GOLDSERVE™ Manual

FCC Notice
WARNING: This equipment generates, uses, and can radiate radio frequency
energy, and if not installed and used in accordance with this instruction manual,
may cause interference to radio communications. It has been tested and found to
comply with the limits of a class A computing device pursuant to Subpart J of Part
15 of FCC rules, which are designed to provide reasonable protection against such
interference when operated in a commercial environment. Operation of this
equipment in a residential area is likely to cause interference in which case the user,
at her own expense, will be required to take whatever measures necessary to correct
the interference.

 GOLDSERVE™ Manual91

Appendix 2 Errata

� Chapter 1, Real-time signal input: Real time signal input is not yet supported at
this time. However, it is at the top of the list of functionality to be completed, and it
is expected to be available within a matter of days.

� Chapter 2, Software: Although the sample UNIX GUI application audioClient in
theory should work as described, it has not yet actually been tested by AuSIM with
the current line of GoldServe servers. Therefore, the reliability of this application
should be considered less solid than other applications this document mentions.

� Chapter 2, System components and specifications: System library and demos
not yet available on CD; GoldServe User Manual (this document) available only
online, not in hardcopy.

� Chapter 2, Hardware: Step 3) The double beep when the server is initialized has
not yet been activated. Step 5 and Startup problems) Audio service through
ethernet is not supported at this time. However, the GoldServe System does come
with ethernet networking software installed, so it can be connected to a LAN for
purposes of transferring files, etc.

� Chapter 3, Run-time usage: The monitor and keyboard are required for runtime
usage at this time. This is because the operator must press the CNTL-ALT-DELETE
keys and enter the username �Golddigger� and the password �nugget� in order to
login to the Windows NT desktop. With practice, this may be done without a
monitor, but a keyboard is still required at boot time. Also, the double beep has yet
to be added.

� Code Defects:
D1001 � cre_open_wave, wavefiles < 1Mb fail to return success flag

